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ABSTRACT
Recent years have witnessed the interesting trend that modern mo-
bile apps perform more and more likely as user-to-user platforms,
where app users can be freely and conveniently connected. Upon
these platforms, rich and diverse data is often delivered across users,
which brings users great conveniences and plentiful services, but
also introduces privacy security concerns. While prior work has
primarily studied illegitimate personal data collection problems in
mobile apps, few paid little attention to the security of this emerg-
ing user-to-user platform feature, thus providing a rather limited
understanding of the privacy risks in this aspect.

In this paper, we focus on the security of the user-to-user plat-
form feature and shed light on its caused insufficiently-studied
but critical privacy risk, which is brought forward by cross-user
personal data over-delivery (denoted as XPO). For the first time,
this paper reveals the landscape of such XPO risk in wild, along
with prevalence and severity assessment. To achieve this, we design
a novel automated risk detection framework, named XPOChecker,
that leverages the advantages of machine learning and program
analysis to extensively and precisely identify potential privacy risks
during user-to-user connections, and regulate whether the deliv-
ered data is legitimate or not. By applying XPOChecker on 13,820
real-world popular Android apps, we find that XPO is prevalent
in practice, with 1,902 apps (13.76%) being affected. In addition to
the mere exposure of diverse private user data which causes seri-
ous and broad privacy infringement, we demonstrate that the XPO
exploits can invalidate privacy preservation mechanisms, leak busi-
ness secrets, and even restore the sensitive membership of victims
which potentially poses personal safety threats. Furthermore, we
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also confirm the existence of XPO risks in iOS apps for the first time.
Last, to help understand and prevent XPO, we have responsibly
launched two notification campaigns to inform the developers of
the affected apps, with the conclusion of five underlying lessons
from developers’ feedback. We hope our work can make up for the
deficiency of the understandings of XPO, help developers avoid
XPO, and motivate further researches.
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1 INTRODUCTION
Nowadays, mobile technique has become an indispensable part of
our daily life. It offers millions of mobile applications (apps for short)
with rich functionalities, and significantly shortens the distance of
communication between people. A recent interesting trend is that
modern mobile apps perform more and more likely as user-to-user
platforms (or social platforms) where app users can be freely and
conveniently connected.

This user-to-user platform characteristic is becoming increas-
ingly popular in practice. It is being involved and reflected in many
regular mobile apps (not even mentioning real social apps). For ex-
ample, the popular video app YouTube does not only allow mobile
users to watch videos on their smartphones, but also let them con-
veniently touch each other and build connections, such as checking
other users’ information (e.g., user profile and public play-lists) and
discussing video content with other users.

However, up to now the security of this user-to-user platform
feature is still rarely concerned. In particular, for the purpose of
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Figure 1: XPO Risk on the Vulnerable Platform of𝑊 .

helping users build strong connections between each other, mobile
apps often design and provide a variety of user-to-user connection
channels, such as messaging (often built in mobile apps), exhib-
ited and public user profile, interested topics, social groups, and
app-specific content. Considering the richness and diversities of
the essential content these channels offer, an important security
question naturally arising is whether sensitive user data is exposed
during user-to-user connections or not.

To confirm this security concern, first of all, we conduct an em-
pirical study on a set of real-world popular apps. Surprisingly, we
find serious privacy risks commonly exist during user-to-user con-
nections. By abusing and exploiting (vulnerable) user-connection
channels, a remote attacker, pretending and attacking as a reg-
ular app user, can easily attack all available users on vulnerable
user-to-user platforms, and cause severe privacy infringement. Con-
sequently, a variety of personal data may be compromised by such
remote attacks, including user real name, phone number, location,
and even secret account data. Using leaked data, the attacker can
even create and draw a detailed picture for a victim user.

We have noticed that app developers and the whole development
and security communities barely pay attention to and even totally
ignore the security of user-to-user connections. Thus, the data-
delivery processes among users are often casually designed by app
developers without security considerations, i.e., not following the
‘data minimization’ security principle as regulated in GDPR [22]:
"personal data shall be adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed".
For convenience, we refer to this insufficiently studied but critical
privacy risk in user-to-user connections as cross-user personal data
over-delivery (XPO).

To demonstrate the XPO security issues, we take a real-world
XPO vulnerability found in a high-profile vulnerable app (discov-
ered by our above study) for example. As strongly requested by
the app developers, we anonymize this app and name it 𝑊 for
convenience.𝑊 is an entertainment- and game-platform app with
10,000,000+ installs. In this app, a user can conveniently log in with
SSO (Single Sign-on) using Facebook account, and easily touch

other users in multiple channels, e.g., finding like-minded people
who like the same games. As shown in Figure 1, an adversary can
easily exploit these channels to access more and sensitive data1 of
any user than what is displayed in this app, including model and
brand of user smartphone, precise geographical location, phone
number, installed app list, and even app account token. Namely,
what app𝑊 actually delivers from other users to the adversary
is not consistent with what is shown on the app’s UI of the ad-
versary. What actually has been delivered contain more sensitive
information about victim users but not shown on UI. And thus, the
adversary can harvest the underlying (but hidden from UI) sensi-
tive information of victim users. In our test targeting on our own
account, via the stolen token, the adversary can log in to𝑊 with
the victim user account and further perform malevolent behaviors,
e.g., squandering the victims’ money to reward his or her own game
videos.

After understanding the serious security consequences of XPO
issues, we intend to assess its security impacts in (a large number of)
real-world apps. For this purpose, we need to design an automated
vulnerability detection system against XPO issues. Nevertheless,
we find this is not an easy task. On the one hand, it is difficult to
precisely identify expected private user data (belonging to victim
users) from various data delivered during user-to-user connections,
including data belonging to things or places that should be insensi-
tive (e.g., latitude and longitude of a shopping center), and personal
data but not belonging to victim users. On the other hand, although
the most convincing manifest of XPO risks is the inconsistency
between the delivered and presented personal data of victim users
(developers usually knowwhat data should be presented; see details
in §2.2), it is challenging to identify and determine the inconsistency.
The reason is simply comparing the literal difference between the
data shown to users and the delivered raw data may not work,
as developers often adopt customized transformations or formats
according to diverse service logics and development styles.

Existing work (e.g., [2, 12, 28, 29, 33, 54, 57]) fail to address above
two challenges, and are hardly extended to achieve our goal, i.e., the
prevalence and severity assessment on XPO in wild. Therefore, we
design a novel automated detection approach, called XPOChecker,
that can scalably and precisely vet real-world mobile apps against
the XPO issues. For this purpose, XPOChecker leverages the ad-
vantages of program analysis and machine learning techniques. In
particular, first XPOChecker designs and utilizes a bi-directional
program slicing technique to analyze the typical process of user-
to-user connections and initialize related potentially sensitive data.
Then, XPOChecker applies correlation-based learning-assist privacy
discovery to differentiate expected personal data from mixed data
sets, e.g., potentially sensitive data but belonging to things, places,
user own. Last, XPOChecker conducts an inconsistency-directed
risk detection to regulate and determine whether delivered per-
sonal data violates the data minimization principle or not.

Relying on XPOChecker, we conduct our security assessment on
13,820 real-world popular apps collected from the official Android
app marketplace (i.e., Google Play). Our assessment results show
that XPO is unexpectedly prevalent, with 1,902 (13.76%) apps being

1Note that to protect user privacy, sensitive user data is replaced with fake values or
masked before being shown, and so as the rest in this paper.
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vulnerable. Both high-profile and long-tail apps are affected and the
total installs of affected apps reach 16.89 billion, which suggests that
numerous users are at risk and XPO has broad security impacts. In
addition to exposing diverse private user data which cause serious
and broad privacy infringement, the XPO exploits is demonstrated
to be able to invalidate privacy preservation mechanisms, leak
business secrets, and even restore the sensitive membership of
victims which poses personal safety threats. As an example, we
find an communication app C (anonymized as requested) leaked
the sensitive cell location of more than 30,000 inmates held in 130
prisons or detentions in the US. By linking the leaked data, the
adversary can infer whether the target inmate is a member of a
specific cell in a particular prison, who are the cellmates of the
target inmate, how many cells are in the given prison and even the
lower bound of its cells’ sizes.

Besides, by manually checking the iOS counterparts of the ver-
ified vulnerable apps during the validation of XPOChecker, the
existence of XPO risks in real-world iOS apps is also confirmed for
the first time. The identified XPO risks have received confirmations
from app vendors, e.g., Strava, Opera and Smule. Last, to help un-
derstanding and preventing XPO, we have responsibly launched
two notification campaigns to inform the developers of the affected
apps, with the conclusion of five underlying lessons from develop-
ers’ feedback. We hope our work can make up for the deficiency
of the understandings of XPO, help developers avoid XPO, and
motivate further researches.

In summary, our contributions are outlined as follows:
• In real-world apps, the under-studied but critical XPO risk
is comprehensively and systematically analyzed, which fa-
cilitates the community’s understandings in this regard.

• We design and implement XPOChecker, which overcomes
several non-trivial technical challenges to automatically iden-
tify XPO risks.

• The landscape and severity of XPO in wild is unveiled with
security assessment on 13,820 real-world apps. We respon-
sibly inform the affected app developers, and conclude five
helpful and meaningful lessons for mitigating XPO.

2 PROBLEM STATEMENT
2.1 Typical Process of XPO
By looking into deeply the app𝑊 introduced before, we present the
typical process of XPO in Figure 2. During user-to-user connections,
two different roles of users are involved, namely the current user
and other users (i.e., the victim users). When the current user build
connections with other users, e.g., viewing their user profiles, the
personal data of other users is first delivered ( 1○) to the mobile
device of current user, then parsed ( 2○) into specific data structure,
e.g., a Java class named "User" in app𝑊 , next transformed ( 3○)
with various functions (e.g., "String.replaceAll()") and finally
presented in UI or not.

During this process, the delivered personal data belonging to
other users can be inconsistent with the presented ones. Typically,
this kind of inconsistency has two forms. The first one is that the
delivered personal data of other users is not presented in apps. The
second one is that the delivered personal data of other users is pre-
sented in apps but being transformed to be coarse grained (e.g., the
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Figure 2: The typical process of XPO.

delivered email address of one other user is "alice@gmail.com"
while the correspondingly presented one is "a***e@gmail.com").
Generally, both of these two forms of inconsistency will enable the
attacker to access more information of the personal data belong-
ing to other users. In this work, we take this inconsistency as the
criterion of regulating XPO. More details are discussed below.

2.2 Vulnerability criterion & Definition
The inconsistency between the delivered and presented personal
data of other users is chosen as the vulnerability criterion on the
basis of two aspects. On the one hand, from the perspective of users,
if they find inappropriately presented personal data, they can send
feedback to app developers for asking adjustment. Besides, they can
even uninstall the target mobile app with a request to delete all their
personal data, which is protected by privacy-preservation laws2.
Thus, the presented personal data within the target mobile app can
be regarded as being acquiesced by the corresponding users.

On the other hand, from the perspective of app developers, they
are typically the ones who are most familiar with the provided
service and clear about what should be presented. Hence, it is
believed that the presented user data can be regarded as in line
with "data minimization" and if the delivered personal data of other
users is inconsistent with it, then XPO risks are brought in.

We emphasize that whether certain personal data should be
displayed and to what granularity should it be presented for offering
specific services is out of the scope of this work. It should be noted
that mobile users and app developers can have different metrics
of judging privacy, and no relevant standards or regulations are
available to refer to.

Based on the selected criterion, here we formally define XPO,
which is inspired by information theory. 𝐸𝑥 is denoted as the in-
formation entropy of x. Therefore, regarding the personal data of
other users, we name the entropy of presented personal data as
𝐸𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 and the entropy of delivered personal data as 𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 .
The formal equation of judging XPO risks is as follows:

𝐸𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 ≠ 𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 (1)

2.3 Threat Model
With the criterion and definition of XPO, this paper further intro-
duces the following threat model of XPO.
Adversary. Regarding XPO, we consider the current user as the
adversary who is curious about the personal data of other users

2For example, users are protected by "Right to be forgotten" as stipulated by GDPR [21]
and "Right to delete" as requested in CCPA [9].
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(i.e., the victim users) but not satisfied with only the presented
information in-app.
Adversary goals. The goal of the adversary is to access as much
personal data as possible. Generally, the more personal data of other
users the adversary obtains, the greater privacy risks the other users
will face.
Adversarial capabilities. We assume that the adversary has com-
plete control of his or her own mobile device, which means the
adversary can arbitrarily monitor cross-user mobile traffic, decom-
pile the target mobile app or instrument mobile app code to access
the delivered personal data of other users. Besides, the underlying
operating system and Java runtime are considered as trusted and
not compromised.

3 METHODOLOGY
3.1 Design Overview
According to Equation 1, the general idea to identify XPO risks is
two-fold. First, we need to locate the delivered personal data of other
users in mobile apps. Then we need to figure out whether they are
consistent with what are presented. One naive way is that we can
automatically exercise the target app with the dynamic app testing.
Then, by extracting the network traffic along with relevant UI, we
can compare their values to check if any concerned inconsistency
exists. Nevertheless, the dynamic app testing is greatly limited in
code coverage [11, 26, 38, 52]. Thus, applying dynamic analysis
on a large-scale mobile apps to identify XPO risks would bring
considerable false negatives and we adopt static analysis instead.

Following the general idea, this paper proposes a static tool
named XPOChecker to automatically identify XPO risks. As shown
in Figure 3, XPOChecker first performs the automated Pre-analysis
which utilizes a bi-directional program slicing technique to analyze
the typical process of XPO and initialize candidate sensitive data.
Then, since the semantics of candidate data can be a reliable sign of
user data and the data of other users normally deviates from the one
of the current user, XPOChecker applies correlation-based learning-
assist Privacy Discovery to automatically differentiate the personal
data of other users from mixed data sets, e.g., potentially sensi-
tive data but belonging to things, places or the current user. Last,
from the insight that the mathematical essence of the concerned
inconsistency is non-injective property, XPOChecker conducts an
inconsistency-directed Risk Detection to automatically regulate
and determine whether delivered personal data violates the data
minimization principle or not.

Since our work mainly targets Android, XPOChecker is imple-
mented for Android. Similarly, our methodology also works for
other platforms such as iOS. The details of XPOChecker are pre-
sented in the following.

3.2 Pre-analysis
To identify the delivered personal data of other users, we first need
to figure out how it is managed within mobile apps. Specifically,
during the empirical study we performed, we randomly sampled
50 apps from the top 500 apps of each app category in Google Play
store [14] and pick out 107 apps that have the personal data of other
users in them by manual check. After an investigation into them,
we have the following observation.

Pre-analysis

Locate Personal Data 

of Other Users
Check Data 

Minimization

XPO Results

Risk Detection

Candidates

Transformations

Personal Data 

of Other Users

Privacy Discovery

Figure 3: Basic workflow of XPOChecker.
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Figure 4: Bi-directional Thin Slicing.

Instead of being scattered everywhere in mobile apps, the de-
livered user personal data is typically managed within centralized
data structures (76.85% apps adopt Java class, 12.04% manage user
data in webview, 7.41% use react javascript code, 2.78% employ
specific frameworks, e.g., Cordova, and 0.93% adopt JSONObject),
which is convenient for further usages. Based on this observation,
we can spot the superset (i.e., candidates) of other users’ personal
data in mobile apps by focusing on the centralized data structures,
and further investigate whether and how they are presented.

Therefore, the Pre-analysis utilizes a bi-directional thin slicing
to identify the candidate user data structures and how they are
presented in UI. As shown in Figure 4, the forward thin slicing
is performed to locate all candidate data structures whose values
are tainted through a taint propagation path that starts from given
network request application programming interfaces (APIs) and
ends at parsed data structures. Thus, if the delivered user personal
data exists, it should be within these parsed data structures (i.e.,
superset). Compared to the traditional slicing including all state-
ments that may affect a point of interest, e.g., data structures in the
context of this paper, the performed forward thin slicing focuses
on producer statements (i.e., those statements that help compute
and copy the value to data structures) with the same principle as in
[47], thus being lightweight.

During implementation, XPOChecker focuses on the main data
structure for managing user personal data, i.e., Java class, and the
top six popular third-party network libraries as ranked by App-
Brain [3] (others have less than 2% adoption in apps) are supported.
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Moreover, two typical ways of data parsing, including deserializa-
tion and method annotation, are considered. For deserialization,
we configure XPOChecker with the top six popular data deserial-
ization libraries [4] (others have less than 1.7% installs). Regarding
method annotation, we simply extract data structures from the an-
notated network request methods. A real case is as follows, where
getProfile() is an annotated method that is executed to request
data of the current user and the annotation placed immediately
before the method name is a data structure (i.e., ProfileModel)
we look for. Besides, we extract all data structures nested in the
identified data structures as candidates.

1 @GET("/api/mobile/v0.5/ my_user_info")
2 Call <ProfileModel > getProfile ();

Meanwhile, the backward thin slicing of Pre-analysis is per-
formed with the same principle, which starts with UI APIs and ends
at reached data structures. During the backward thin slicing, the
applied data transformations and relevant UI components are also
extracted. The observation here is that we do not need to track
how data structures are propagated in apps before being presented.
Instead, we directly focus on how data structures are presented in
UI and extract the applied data transformations along with rele-
vant UI components for presentation, thus being more precise and
lightweight. We found that nested data structures could cause a
data structure to be missed by the backward thin slicing. But, this
can be fixed through the forward thin slicing where nested data
structures are all extracted.

In addition to explicit data flow, implicit data flow is considered
since personal data may implicitly flow to UI, e.g., a mobile app
shows user gender with a static icon of female or male according
to the delivered gender value instead of directly showing its value.
To cover as many UI mechanisms applied in wild as possible, we
have performed an experiment over the dataset of our security
assessment, which checks the view components in each app and lists
21 types of view components that occur more than 1‰ times. We
crawled Android development documentation [13] and manually
extracted all standard APIs related to UI which covers all these
21 types of view components. Non-standard UI interfaces such as
"notifyChange()" are also consciously included. Meanwhile, it
should be noted that XPOChecker is highly configurable so that
customized mechanisms can be flexibly incorporated. For instance,
if a new API needs to be supported, it can be appended to the
configuration file of XPOChecker and no other changes are required.

In general, with the bi-directional thin slicing, the Pre-analysis
outputs the candidate user data structures and the relevant data
transformations applied in an analyzed app.

3.3 Locate Personal Data of Other Users
Next, given all candidates, XPOChecker needs to differentiate the
personal data of other users from irrelevant one. Specifically, this
step is designed as two-fold, i.e., identifying the user personal data
first and then locating the personal data of other users.

3.3.1 Identify Personal Data. Since not all of the candidate data
structures are related to users, the challenge must be adequately
addressed here is as following.

Challenge: User personal data is mixed up with data of
things or places. Based on the semantics, previous works identify
user personal data with either privacy-related keywords [27–29] or
machine learning [34, 35, 43]. Nevertheless, these ways are normally
limited by their comprehensiveness (e.g., the considered keywords
or the training set) and not able to effectively identify user personal
data in the context of XPO. For instance, during user-to-user con-
nections, the keyword "email" could belong to a public institution,
which is not sensitive at all. During the empirical study, we have
an insight to overcome this challenge as follows.

Insight: The semantics of the data structures’ names along
with their fields could be a reliable sign of personal data. A
real case is that a Java class named "UserProfile" in mobile apps
directly tells that it belongs to an user. Besides, we can infer that
if the target data structure contains private attributes fields (e.g.,
"age") indicating a natural person, it is also an user data structure.

Based on this insight, the correlation-based learning-assist Pri-
vacy Discovery is applied. Firstly, a user data classifier which takes
as input the name of a data structure is employed to pick out the real
user data structures from candidate ones. Next, since user personal
data is typically managed within centralized data structures (as
clarified in the previous observation), all fields within the identified
user data structures can be personal data fields and thus being kept.
The greatest advantage is that this way can break through the limi-
tations of prior works and cover as much as possible personal data
of users. Then, since fields of the same type of personal data should
be related or similar in semantics, the Privacy Discovery performs
a correlation analysis to correlate all kept fields and further picks
out the sensitive personal data fields.

During implementation, we first manually collect privacy-related
keywords from previous works [27–29, 34, 35] and categorize them
into 52 types as keyword lists according to their semantics. Since
there is no standard source available for identifying attributes indi-
cating a person, we take as a criterion the given attribute is related
to a person only when it normally cannot have other meanings
in apps. Three analysts were assigned to extract such attributes
from the keyword lists hoping that two or more analysts reach a
consensus. Then, we modify ClueFinder [35] which is a state of
the art sensitive code fragment detector, and employ it to check
whether a candidate user data structure has fields matched with the
extracted attributes. If matched, the candidate user data structure is
automatically labelled as user data structure. Subsequently, the user
data classifier based on CNN & RNN [59] is trained to automatically
identify user data structures from candidate ones. Next, to perform
correlation analysis on the kept fields of the identified user data
structures, the widely used and state of the art lexical databases
for calculating the similarity or relatedness between a pair of con-
cepts, i.e., WordNet::similarity [40] and ConceptNet [15, 46], are
adopted. Two fields are correlated only when they are related in
WordNet::similarity or ConceptNet. Thus, fields correlated with the
keyword lists are treated as user personal data. The remaining un-
correlated ones are then clustered with the same way and only take
negligible manual effort to further judge whether they are personal
data. With all identified personal data fields, a privacy lexicon is
constructed, which has 64 types and is used to identify personal
data fields within the identified user data structures thereafter.
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Table 1 shows samples of private attributes indicating a person
and names of user data structures. The keyword lists and privacy lex-
icon are published in https://github.com/xpochecker/XPOChecker.

Table 1: Samples of attributes indicating a person and names
of user data structures.

Category Sample

Attributes indicating a person age, gender, religion, birthday, avatar ...
Names of user data structures user, follower, member, myprofile, account ...

3.3.2 Locate Other Users. Since not all of the identified user data
structures belong to other users, we have the following challenge.

Challenge: Blurred boundary between personal data of
the current user and other users. XPOChecker performs a static
analysis, thus there is no idea of the real values of identified user
data structures. As XPO risks are associated with the personal data
of other users only, user data structures that belong to the current
user need to be further filtered out.

Insight: Personal data of the current user and other users
can deviate from each other in three key aspects of XPO.

• Network request. Personal data of the current user and
other users are normally requested with different network
requests. For instance, the url "/api/mobile/users/me" is
designed to request the personal data of the current user
while "/api/v1/users/nearby" is requested to obtain the
personal data of other users nearby. Specifically, urls, names
of methods handling network requests and interface names
of network services are taken into consideration.

• Data structure. The names of data structures that belong to
the current user and other users can be different with each
other in some cases. For instance, a user data structure named
as "Follower" belongs to other users while "MyProfile"
refers to the data structure of the current user explicitly.

• UI. Personal data of the current user and other users are
normally shown in different views. For example, personal
data of other users typically would not flow to activities,
fragments, or widgets where the current user edits his or her
profile and settings.

These three key aspects are taken as features during Privacy
Discovery and their string values extracted by the Pre-analysis are
collected to train an other users classifier based on CNN & RNN.
The other users classifier effectively infers the owner of a given
user data structure and automatically filters out user data structures
belonging to the current user.

3.4 Check Data Minimization
After identifying the data structures of other users along with their
personal data fields, XPOChecker needs to further investigate how
they are processed before being shown in UI and judge whether any
concerned inconsistency exists. The key challenge is as follows:

Challenge: Highly customized personal data processing
before presentation. In customized ways, the personal data of
other users is transformed before being displayed in mobile apps,
which depends on various service logics and different development

Mutation

Name: Jane Faker Age:30

Gender: male Distance: 54.123km

Height: 170 Weight: 65.123kg

Birthday: 1991-11-11

PhoneNumber: +1 2112112112

...
Straw-man Profile

Transformations

Non-injective 

Transformation
TestScript

Dependency

Figure 5: Design of information loss analysis.

styles of app developers. Thus, it is hard to tell whether the cus-
tomized presentation forms of the delivered user data bring the
concerned inconsistency and unknown how to achieve a general but
effective identification of XPO risks under such circumstances. To
overcome this challenge, the inconsistency-directed Risk Detection
is proposed, which has the following insight.

Insight: The mathematical essence of the inconsistency
between delivered personal data and presented personal data
of other users is non-injective. We find that no matter how
customized is the user personal data processed, only information
loss can result in the concerned inconsistency and the essence
of information loss is non-injective property, i.e., whether two
close but different delivered user personal data can result in the
same presentation. In line with the criterion of XPO, this property
is reflected in two aspects. On the one hand, if personal data of
other users is not shown in UI (i.e., resulting the same presentation
- null), it is obviously a concerned inconsistency. On the other
hand, if personal data of other users is displayed in UI but being
processed with non-injective transformations (aka, data masking
transformations), the inconsistency is also brought in.

The Risk Detection inspects the first aspect by checking whether
the personal data fields within data structures of other users are
reached by the backward thin slicing (i.e., flow to UI). For the second
aspect, the Risk Detection employs the information loss analysis
based on a forged straw-man profile to automatically check the
"non-injective" property of applied transformations.

1 public void bind(VideoItem vi, int i){
2 ...
3 bindDistance(Float.valueOf(vi.metadata.distanceInKm));
4 ...
5 return;
6 }
7 //Bind transformed value of "distanceInKm"
8 private void bindDistance(Float f){
9 ...
10 int max=Math.max(1, Math.round(f.floatValue ()));
11 SnsDIstanceLabelView sdlv=this.mDistanceView;
12 sdlv.setText(sdlv.getContext ().getString(R.string.

distance_km , new Object []{ Integer.valueOf(max)}));
13 }

Figure 6: A real case of non-injective transformations which
round fine-grained "distanceInKm" to be a coarse-grained
one and turn it to be "1 km" if it is less than 1 km.

https://github.com/xpochecker/XPOChecker
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Specifically, we constructed the forged straw-man profile with
fake but general values for 40 types of personal data in the privacy
lexicon. The left 24 types are ambiguous to assign concrete values,
e.g., "user preference", thus not being considered. Most importantly,
the fake value of each considered personal data type is mutated
to be various values that are designed to be close to each other,
which have the best chance to identify non-injective transforma-
tions. Then, as shown in Figure 5, the information loss analysis
adopts an automated way to generate test scripts that invoke target
transformation functions and take mutated personal data values as
inputs. Finally, the outputs of executing test scripts efficiently and
precisely tell whether given transformations are non-injective.

To ease the understanding of information loss analysis, a real case
is presented in Figure 6. The personal data field "distanceInKm"
of user data structure "VideoItem.metadata" is processed with
transformation functions, e.g., "Math.round()" and "Math.max()".
Then, a test script will be generated, which invokes these identi-
fied transformation functions and imports necessary dependencies
to ensure that it can successfully run, e.g., importing the library
"java.lang.Math" where two of the identified transformation
functions are defined. Finally, according to the personal data type of
"distanceInKm" (i.e., distance), the corresponding mutated values
of distance (e.g., "54.122", "54.123" and "54.124") are taken as inputs.
Then the generated test script is executed to check whether the
outputs of the tested transformation function are the same or not. If
the outputs are the same, the tested transformation is non-injective.
Otherwise, it is not. Thus, "Math.round()" and "Math.max()"
would be flagged as non-injective transformations.

Finally, based on the not presented personal data of other users
and the identified non-injective transformations, the Risk Detection
generates XPO results. To prevent XPOChecker from being abused,
it will be gradually published in https://github.com/xpochecker/
XPOChecker once this paper is accepted.

3.5 Performance Validation
It is critical to understand the performance of XPOChecker for en-
suring the reliability of our security assessment. First, we evaluated
each part of XPOChecker. Then, due to the missing of ground truth,
we manually verify the reported XPO results. Studying the full set
of results is infeasible. Hence, we adopt the sampling scheme.
Dataset of Training. From the dataset of our security assess-
ment, we randomly selected 300 apps from 30 categories of An-
droid apps (10 apps from each category) that contain user data
structures. Specifically, four Android experts manually labeled and
cross-validated 8,958 elements from network requests, data struc-
tures, and UI in these sampled apps, which took around 50 hours
for each and span over 10 days. For data structures that have fields
indicating a person, their names are automatically labelled as user
data structures. In total, we collected 1,549 positive samples and
7,409 negative ones for classifying user data structures, and 1,039
positive samples together with 7,919 negative ones for filtering out
data structures of the current user. To achieve better classifying
results, we balance the labeled samples by keeping all positive ones
and randomly sampling the same amount of negative ones as our
training set. As a result, the total sizes of our training sets are 3,098
and 2,078 respectively.

Performance of Privacy Discovery. A ten-fold cross-validation is
adopted where we randomly partition each dataset into ten subsets,
train the relevant classifier on nine of them, and then test the
remaining subset. The process is repeated on each subset ten times.
Finally, we adopted CNN & RNN as the machine learning algorithm,
which has the best performance (88.96% precision and 88.39% recall
for the user data classifier, 95.70% precision and 89.90% recall for
the other users classifier).
Performance of Risk Detection. For the first aspect of non-
injective property, performance of the Risk Detection can be verified
by the validation results of XPOChecker. For the second aspect, i.e.,
information loss analysis, the average analysis time of it for each
analyzed app in our security assessment is 2.61s, which reflects its
high efficiency. In total, 82 apps were reported to be affected by
non-injective transformations. To verify the performance of infor-
mation loss analysis, we randomly selected another 82 apps that
were not reported by it and manually checked all of them (i.e., 164
apps). As shown in Table 3, the information loss analysis achieves
high precision (82.93%) and high recall(100%). During the valida-
tion, we found that the non-injective data transformations can still
be effectively identified even when they are obfuscated. The main
reason for the 14 false positives is that two or more of the mutated
values for certain personal data happen to trigger the exception of
target transformation function, which outputs the same results and
thus is wrongly flagged as being non-injective.

To validate the performance of XPOChecker, we randomly se-
lected another batch of 300 apps (10 apps from each category)
analyzed during our security assessment, which is a best-effort
solution. Since this batch was randomly picked, it is firmly believed
the validation results can well provide a reasonable performance
estimation of XPOChecker during the security assessment.
Validation of XPOChecker. By automatically monitoring network
traffic with MitmProxy [1] or instrumenting the identified data
structures of other users and UI APIs in these apps with Frida [37]
and Xposed [44], we check whether the delivered personal data
is consistent with the presented one of other users. Each sampled
app was manually explored for at least 20 minutes on average (to
trigger as many functionalities as possible). As shown in Table 2,
XPOChecker achieves 75% precision and 96.77% recall among 170
verifiable apps. The main reasons for not being able to verify all the
sampled apps are due to the need of special credentials, payment,
certain network or area restrictions, and so on. Besides, Mitmproxy
did not work for all the verified apps. It failed to capture the traffic of
9 apps. We mitigated this problem by conducting instrumentation
with Frida and Xposed. Among all verifiable apps, there is only one
false-negative case whose code is obfuscated and thus thwarting
Privacy Discovery which relies on code semantics. For the left
verifiable apps, 30 are true positives, 10 are false positives and 129
are true negatives. In most cases, the false positives are due to
the failure of distinguishing other users from the current user. We
further manually checked the code of these false-positive apps and
confirmed that most of the results of Privacy Discovery are right.
But these false-positive apps actually have no other users or employ
coding practices (used by most apps for requesting or processing
other users’ data) to only handle the information belonging to the
current user. Since XPOChecker achieves practical precision and
high recall, we consider them acceptable.

https://github.com/xpochecker/XPOChecker
https://github.com/xpochecker/XPOChecker
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Table 2: Performance of XPOChecker among 30 app categories. "-" in Precision means there is no reported positive for given app
category (i.e., TP+FP = 0); "-" in Recall means there is no positive in ground truth for given app category (i.e., TP+FN = 0).

ID App Category #Verifiable Precision (%) Recall (%) ID App Category #Verifiable Precision (%) Recall (%)

01 Education 5 100.00 100.00 16 Food & Drink 6 66.67 100.00
02 Entertainment 3 - - 17 Health & Fitness 7 - -
03 House & Home 6 66.67 100.00 18 Art & Design 10 - -
04 Lifestyle 5 50.00 100.00 19 Books & Reference 10 - -
05 Maps & Navigation 1 0.00 - 20 Comics 6 - -
06 Music & Audio 5 75.00 100.00 21 Communication 7 - -
07 Parenting 5 100.00 100.00 22 Medical 6 - -
08 Shopping 3 66.67 100.00 23 News & Magazines 6 100.00 100.00
09 Auto & Vehicles 2 - - 24 Personalization 9 - -
10 Beauty 2 100.00 100.00 25 Photography 10 - -
11 Business 3 0.00 - 26 Productivity 10 - -
12 Dating 3 100.00 100.00 27 Sports 8 100.00 100.00
13 Social 6 100.00 100.00 28 Video Players & Editors 10 - -
14 Travel & Local 4 - - 29 Weather 8 0.00 -
15 Finance 0 - - 30 Events 7 75.00 100.00

Overall 170 75.00 96.77

Table 3: Performance of information loss analysis.

TP FP TN FN Precision Recall

Reported Apps 68 14 - - 82.93% 100.00%Not-reported Apps - - 82 0

4 SECURITY ASSESSMENT
Our security assessment is performed on a large dataset of apps col-
lected fromGoogle Play during April 2021. These appswere selected
with the top 500 apps in each category listed by AndroidRank [14]
(30 categories were considered in total3). Since category "Events"
only had the top 340 apps in AndroidRank, we crawled 14,840 app
ids in total and successfully downloaded 13,906 apps while the re-
maining 934 apps were failed to download due to not being free,
area restriction and so on.
Analysis Statistics. To perform the security assessment of XPO,
XPOChecker analyzed these downloaded apps on a Ubuntu 18.04
LTS 64-bit server with 40 CPU cores (1.2GHz) and 128GB memory.
The analysis is performed in parallel and has a timeout of 30minutes
to analyze each app. XPOChecker is implemented based on the Soot
framework [30] and FlowDroid [5] with 4,270 lines of Java code
and 3,180 lines of Python code. On average, the analysis took 52.65s
to analyze each app and 13,820 (99.38%) apps were successfully
analyzed in total. The rest apps either ran out of time or failed to
be analyzed by Soot or FlowDroid. Finally, XPOChecker found that
1,902 apps were affected by XPO risks.
Research Questions. The following two research questions are
vital in revealing the real situation of XPO in the wild, but have not
yet been answered in any prior work:

• RQ1: What is the landscape of XPO risks in the wild?
• RQ2: How severe are XPO risks?

3Categories "Daydream", "Libraries & Demo", "Tools" and "Wear OS by Google" in
Google Play [41] are filtered out since their apps are overlapped with other categories
or irrelevant with XPO risk.

Figure 7: Distribution of app categories affected by XPO.

4.1 Ethics
Conducting the security assessment might raise ethical issues.
Therefore, we carefully manage our research activities to ensure
that they stay within the legal and ethical boundaries. This whole
research has been approved by our institution’s IRB. The approval
process is similar to the exempt review in the US because this study
is considered as “minimal risk" when consulting with IRB staff.
Note that for performing necessary investigation, we only use our
own accounts to verify XPO risks in most cases and immediately
stop if real user data is encountered. We emphasize that real user
data is not stored in any persistent storage and is also not dissemi-
nated in any way to anybody. Additionally, user data involved is
all anonymized or masked to prevent their owners (ourselves in
most cases) from being identifiable, and we diligently follow all re-
quirements proposed by app developers and app service providers
to protect real users from being affected.
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4.2 Landscape of XPO
Prevalence of XPO. Out of the 13,820 successfully analyzed apps,
we identified 1,902 (13.76%) apps having XPO risks in total. Espe-
cially, as shown in Figure 7, the affected number of apps in all app
categories varies. We find that the distribution (of the apps having
XPO risks) among the app categories is positively correlated with
the amount of services involving user-to-user channels. For exam-
ple, compared to other categories, more apps of Shopping and Social
categories are affected while they naturally provide more services
involving socializing with other users. Besides, this distribution
conforms to the "Pareto principle" and can provide key areas for
regulators to review and supervise.

Table 4: The top-10 of affected personal data types.

Personal Data Type Num. of Affected Fields

Mail Address 1,890
Geographical Location 1,743
Phone Number 1,440
Birthday 1,429
Age 1,084
Personal Address 816
Password 363
Social Identifier 355
Account Balance 328
Job 266

Affected personal data. As shown in Table 4, we find that several
types of sensitive personal data (e.g., mail address) are the mainly
affected ones (note that the multiple affected personal data fields
within one app may belong to the same type). During the validation,
we noticed that the most affected personal data types are also the
most frequently collected ones. This finding is not out of expectation
but extremely helpful. On the one hand, it can help determine
which types of user personal data should be reviewed as the highest
priority for app developers. On the other hand, it can help mobile
users keep focused and better protect their privacy with their own
efforts. For example, on the premise that mobile service can be
normally served, mobile users can register with disposable email
addresses or phone numbers, fake geographical locations and forged
birthdays to ensure the security of their privacy in most cases.

Moreover, by looking into the reported results, we found two spe-
cial kinds of personal data that are rarely studied by prior works, i.e.,
activity privacy and passive privacy. Activity privacy includes sen-
sitive personal data that users generate during interacting with mo-
bile apps. For example, when viewing various goods in a shopping
app, users can add anything they like into their wishlist/shopping
cart, which is sensitive and can be used to learn their preferences.
Passive privacy points to the sensitive personal data that is not
proactively generated by the user. For instance, we found a popular
communication app which leaked the cell location of inmates in the
United States. Such passive privacy is not provided or generated by
its owners but passively assigned by other parties (e.g., the prison).
Both of these two special kinds of personal data have no specific sys-
tem APIs to track [6, 42], no user input to monitor [27, 34] and are
irrelevant with illegal personal data collection. Thus, they cannot
be well handled or even found by most prior works.
Scale of affected users. The installations of identified apps in
Google Play (if available) were collected and the results are out

of expectation as shown in Table 54. If taking ">5,000,000" as the
boundary, we found that compared to long-tail apps, high-profile
apps do not care more about the security of user-to-user connection
channels. Regarding the distribution among the installation levels,
we found that the installation level "1,000,000-5,000,000" had the
most affected apps. Moreover, we estimated the scale of affected
mobile users by counting the sum of all affected apps’ installation,
which reaches 16.89 billion in total. Noted that this number does
not represent the real scale of affected users since a mobile user
can use multiple apps simultaneously. But it actually can reflect
how big the affected user scale is, and we would like to raise the
awareness of the community by doing so.
Existence of XPO Risks on iOS Platform. For the validated
vulnerable apps during performance validation, we try to look for
their counterparts on iOS platform and successfully find 44 apps
have iOS versions. Then by monitoring network traffic, we confirm
that 19 apps still have the same privacy risks as their Android
counterparts, which reveal the existence of XPO risks in iOS apps
for the first time.
Answer I: XPO is unexpectedly widespread in the wild and nu-
merous mobile users are at risk.

4.3 Severity of XPO Risks
Generally, XPO directly leads to the exposure of sensitive personal
data, which already causes various privacy infringement. To further
understand the severity of XPO, we randomly picked 100 apps from
all detected ones to study. We find that the severity of XPO can be
more than merely exposing certain user data and take exposure of
location-related user data as illustrations in the next.

4.3.1 Invalidate Mechanisms of Privacy Preservation. An obvious
case proving that XPO can invalidate mechanisms of preserving
user privacy is Strava, a popular fitness app. XPOChecker detected
that Strava exposed the start GPS point of users’ running trajectory.
To further study it, we created two Strava users, i.e., A and B, and
set them as friends of each other. Then, we set the privacy zone5 of
A, started running which created a running trajectory as shown in
Figure 8, and posted this running record. Nevertheless, as shown
in Figure 8(b), while the segments of A’s running trajectory within
the privacy zone were correctly hidden, the real GPS location of
the start point was delivered to B. Since user A intends to hide
the start point, which is inside the privacy zone, such XPO may
result in a leak of sensitive personal data, e.g., the home address
and workplace where users may commonly take as start points to
work out. By combining public information in Strava, e.g., photos,
the adversary may even be able to locate a specific person in the
real world, which further raises safety threats to users of Strava.

4.3.2 Leak Business Secret. XPO risks can even leak business se-
crets. A real case is that we found app B directly exposed users’
geographical location. And the adversary can directly exploit this
at scale by incrementally crawling as many as possible users’ geo-
graphical location to leak business secrets, e.g., the geographical
distribution of users in app B, as shown in Figure 9. There are many

41,848 detected apps were still in Google Play on August 2021.
5"Privacy Zone" [16] is a privacy-preservation mechanism, which hides the portion of
any activity within it from being seen by other users.
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Table 5: Distribution of affected apps’ installation.

Installation Level Num. of Affected Apps

>50,000,000 105
10,000,000 - 50,000,000 413
5,000,000 - 10,000,000 316
1,000,000 - 5,000,000 691
500,000 - 1,000,000 155
100,000 - 500,000 136
<100,000 32

(a) (b)

Figure 8: (a) User A: Running trajectory and privacy zone; (b)
User B: View and network traffic of A’s running record.

Figure 9: Revealing the geographical distribution of users.

similar situations where business secrets can be leaked due to XPO
risks. For instance, we found that some apps leaked the registration
and last active date of users, which the adversary can exploit to
understand the daily registered users, daily active users (DAU) and
so on of a mobile app. Such business secrets can be key factors for
seeking funding and can even be analyzed by competitors to build
targeted marketing strategies.

4.3.3 Enable Link Attack and Pose Safety Threats. Among the af-
fected personal data, many types are linkable (e.g., phone number),
which have been studied by LinkDroid [18]. LinkDroid focused on
the risk that malicious apps can link and aggregate usage behav-
iors of the same user across different apps. In contrast, we found
that such linking/aggregation attack is possible for the malicious
current user to conduct. Moreover, the leaked linkable personal

Figure 10: Leakage of inmate membership in app C

data can even be used to aggregate users with the same sensitive
attributes, which can further leak the sensitive membership of users.

App C is a communication app designed for allowing inmates
in the United States to be visited by their families and friends
through video calls. As identified by XPOChecker, app C did de-
liver more than necessary personal data of inmates to the attacker.
"inmate_location" is the linkable personal data involved, which
represents the cell location of an inmate. As presented in Figure 10,
such excessive exposure can benefit the adversary to restore the
cellmate membership among more than 30,000 inmates held in 130
prisons or detentions in the US. Namely, the adversary can infer
whether the target inmate is a member of a specific cell in a partic-
ular prison, who are the cellmates of the target inmate, even how
many cells are in the given prison and the lower bound of its cells’
sizes. Combined with the public personal information of inmates
shown in app C, such XPO risk can seriously threaten the personal
safety of inmates in addition to just privacy.
Answer II: XPO can leak various sensitive personal data, make the
privacy preservation mechanisms ineffective, leak business secrets
and even pose real safety threats to users.

5 LESSONS LEARNED FROM XPO
We responsibly notified the affected developers, which has two
main goals: first, we need to inform them of the identified XPO
risks. Second, we want to gain insights into the underlying lessons
that can be learnt in the first place.

5.1 Notification Campaign
To notify the affected app developers, we extracted the email ad-
dresses they submitted to Google Play. To ease the overhead of
handling our reports, we briefly explained XPO risks and put de-
tails in an attached report. Besides, three questions were asked,
including if they are aware of preserving user privacy while deliver-
ing personal data of other users, if they are conscious of XPO risks
as well as why they exist, and what are their plans to remedy XPO
or any proposal for support. Furthermore, we followed best prac-
tices established by prior works [31, 48, 49] allowing developers to
opt-out.

We performed two notification campaigns to inform the affected
app developers. During this process, we merged the emails sending
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to the same developer and finished the first notification campaign
before August 15, 2021. Next, for developers that did not response
to us or only provide automated responses, we launched the sec-
ond notification campaign which was finished before December
1, 2021. Overall, 1,748 unique report emails were sent and 1,641 of
them were successfully sent. The fail ones are due to invalid email
addresses, inboxes of the recipients are full and so on. In total, 386
unique responses were received, where 355 of them are automated
replies. Among the left 31 manual responses, 1 denied our report,
12 confirmed and 7 confirmed our report along with feedback to-
wards our questions. Most of the manual responses that neither
confirm nor deny our report said that "We’ll forward this report to
the appropriate team" and no further responses are received any
more. Note that there may be multiple back and forth processes
during the notification campaigns since app developers may query
about more details of XPO and ask for supports.

5.2 Developer Response
For the app developer that denied our report, we confirmed that it
is the false positive of XPOChecker. Referring to the confirmation
responses but without feedback towards our questions, we have
observed that many of them just agree with or acknowledge our
reports and briefly explain how they are going to fix the reported
privacy issues. We notice that the possible reason for not answering
our questions can be the consideration of protecting certain busi-
ness secrets, which may be needed to provide reasonable feedback.
For instance, some app developers thank us and "acknowledge about
the report email" but say that they cannot "disclose any information
with regards to our queries".

Most importantly, by looking into those confirmations with feed-
back and relevant apps, multiple lessons are learnt as follows:

• App developers subconsciously thought that their users can
only obtain information from what is shown in UI. This is
hardly new since app developers nowadays still hard code
revertible credentials in mobile apps [23, 60, 62]. However,
as shown in the threat model of XPO, the scope of the mobile
client can be fully under the adversary’s control.
Lesson I: App developers should correct their wrong un-
derstanding of the privacy security boundary.

• App developers stated that "they are always doing their best
to take user privacy seriously and preserve user privacy while
transmitting or using user personal data". However, three
of them admit that XPO exists because their current devel-
opment status is concentrated on the implementation of
functionality to occupy the market while carelessly resulting
in such privacy risk.
Lesson II: The regulators should notice that developers can
be inconsistent between their sayings and actions, and app
developers should recheck their service.

Then, we found that some issues commonly seen in software
development also contribute to the existence of XPO and can be
referred to avoid it.

• It is mentioned that during the fast iterative development of
mobile apps, there might appear inconsistent demands of the

user data among different app versions. One of these respon-
dents directly checked with his team once he confirmed our
report and said that "there were three features that required
longitude and latitude from other users but two out of three
were removed in the current version, the last one can be fixed
by returning a different type of data ’boolean’". As a result,
during the frequent iteration of mobile apps, app developers
may forget to stop delivering personal data that is no longer
needed in the current version of their apps.
Lesson III:When iterating app versions, app developers
should check whether user data used in the previous app
version is still necessary for the current version.

• During product management, app developers may indeed
considered what user data should be delivered for build-
ing user-to-user connections. But, as argued by one typical
feedback, "during development, it is a common issue where
developers’ work and product management cannot always be
in sync", and thus bringing about the XPO risks.
Lesson IV: App developers should ensure the synchroniza-
tion between app development and product management
to avoid XPO risks.

With further investigation, we found that app developers were
even forced to intentionally allow such privacy risks to exist in
some cases. Such special situations are as follows:

• Limited budget to perform privacy-preservation com-
putation. There is indeed a balance between protecting user
privacy and providing satisfying service, as some respon-
dents stated: "The product was built as a startup with a small
team and limited budget so the overhead processing time on
the server is not possible, that is why we had to push some logic
to clients like a distributed way to handle the logic".

• Consideration of service performance. Another factor
worried by the app developers is the performance of their
service. If all privacy-related computations are moved to
the server-side, the performance of their service would be
affected, e.g., bringing high response delay. Better service
performance means better user experience, which is posi-
tively correlated to the market share the app can occupy.
Thus, app developers have to consider the performance cost
they have to pay for preserving user privacy.

Lesson V: App developers should ensure the security of user pri-
vacy, instead of intentionally allowing the existence of XPO.

During the notification campaigns, most of the app developers
that confirmed our report have adjusted their apps or services to
mitigate XPO risks with our help. More importantly, we want to
point out that app developers should and must reconsider the bal-
ance between providing their service and preserving user privacy,
and put the security of user privacy in the first place.

6 DISCUSSION & LIMITATION
Our study brings to light an insufficiently-studied but critical pri-
vacy risk (i.e., XPO) existed within the data delivery across users.
Our security assessment reveals the landscape and severity of XPO,
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which suggest that the community and app developers lack a suf-
ficient awareness of it, and numerous mobile users are at risk. By
notifying the affected app developers, our work further presents
five underlying lessons which can be referred to mitigate XPO risk.

We admit that our approach naturally suffers from certain lim-
itations. For instance, code obfuscation can bring false negatives
since XPOChecker relies on code semantics to identify the personal
data of other users. However, as shown by Wermke et al. [55] (less
than 25% of apps were obfuscated in Google Play) and Nan et al.
[35], app developers tend not to obfuscate data-related code within
their apps to avoid disrupting the apps’ normal executions (e.g.,
causing a crash). Besides, during our validation, there is only one
false negative that is due to obfuscation. Admittedly, XPOChecker
cannot prevent determined app developers from evading our anal-
ysis such as adopting code obfuscation to erase the semantics of
app code. To handle this, XPOChecker can adopt more sophisticated
techniques [7, 56] which is an orthogonal research direction. In this
paper, XPOChecker is designed to conduct security assessment of
XPO in the wild and thus we do not consider a future app developer
who tries to evade XPOChecker. Besides, our tool validation and
security assessment show that XPOChecker is effective to reveal
the landscape and severity of XPO risks in the wild.

Additionally, it should be pointed out that XPOChecker may
have certain amount of false positives. Although dynamic Android
app testing may still be the most convincing way to confirm XPO
risks, we cannot apply it to automatically verify the results of
XPOChecker, since it is limited by low code coverage [26, 38, 52].
Namely, if a truly risky app reported by XPOChecker is dynami-
cally tested by an automated exerciser, e.g., Monkey [24], the user
interactions to manifest the risk can be too specific for the exer-
ciser to trigger. Further, a semi-automated dynamic analysis is also
considered to verify the results of XPOChecker. Nevertheless, we
find that it is obviously unsuitable for a large scale of apps, i.e.,
manually examine, register, login and explore all 1,902 apps re-
ported by XPOChecker to verify the XPO risks. Hence, we take the
sampling scheme instead to perform the performance validation of
XPOChecker, which adopts a similar semi-automated way to verify
the randomly selected results of XPOChecker.

Besides, two procedures, i.e., extracting UI APIs from the official
documents of Android development and re-training Privacy Dis-
covery of XPOChecker, may need to be repeated regularly. On the
one hand, when Android updates and adds new UI APIs, we need
to re-extract these APIs. However, by analyzing their update dates,
we find that UI APIs are updated every 444.33 days on average.
The time window for updating XPOChecker is even broader, since
it often takes time to adopt new APIs in practice. On the other
hand, we collect the previous versions (one year ago) of the apps
that were used for training in this paper. Based on these collected
apps, we then re-train the two classifiers of Privacy Discovery, and
check their performance changes on the training sets labelled in
this paper. The results show their performance is slightly affected
and degraded (i.e., model aging issue), which can be mitigated by
employing relevant SOTA but orthogonal approaches.

Finally, although our security assessment is performed on An-
droid apps, the ideas proposed in this paper also work on iOS
platform. For the first time, the existence of XPO risks in iOS apps
is confirmed. Besides, based on XPOChecker, further researches can

study whether the personal data delivery across users complies
with app descriptions, privacy policies and many other possible
sources, which we leave as a future work. Moreover, during the
process of notifying the affected app vendors, we strongly feel the
positive attitude of app developers (e.g., Opera) who have provided
feedback for working together to mitigate XPO risks and it is firmly
believed that mobile privacy will be substantially enhanced with
the joint efforts of the whole community.

7 RELATEDWORK
7.1 Personal Data Collection
Static & Dynamic Analysis. To detect privacy leakage associated
with personal data collection, researchers have designed various
schemes with both static [5, 8, 25, 32, 36, 54] and dynamic taint
analysis [17, 33, 50, 51]. Moreover, Recon [43] and AGRIGENTO
[12] detected privacy leakage based on network traffic which is
generated by testing mobile apps. Different from them, this paper
focuses on cross-user personal data over-delivery risk instead of
privacy risks within the personal data collection.
Privacy Types & Legality of Collection. Some prior works [27,
28, 34, 35] considered leakage of fixed types of private data during
personal data collection, while other works focused on the detection
of real private data leakage, which is not in compliance with user
intention [10, 19, 20, 39, 57, 58] or privacy policy [2, 45, 53, 61].
Unlike these works, this paper identifies as much as possible the
personal data of other users with the Privacy Discovery and focuses
on privacy leakage within the user-to-user connection channels.

7.2 Cross-User Personal Data Delivery
Few work has paid attention to personal data delivery across users.
The most related work was conducted by Kock et al. [29], which
revealed Server-based InFormation OvershariNg vulnerabilities
(denoted as SIFON in the paper). By using both static analysis and
dynamic analysis, Kock et al. proposed S-HUSH/D-HUSH to semi-
automatically detect this vulnerability. S-HUSH/D-HUSH focuses
on sensitive information that was sent from the server but hidden.
With a large-scale analysis of 31,559 apps in social category, eight
of these apps were identified to be vulnerable, which confirmed the
existence of SIFON vulnerability in Android social apps.

Nevertheless, different from S-HUSH/D-HUSH, this paper fo-
cuses on cross-user personal data over-delivery and overcomes
three new challenges to identify XPO risks in real-world apps.

Firstly, S-HUSH/D-HUSH focuses on sensitive information that
is shared from the server side and identifies it based on manually
collected keywords. The keywords-based scheme is naturally lim-
ited by its comprehensiveness. Most importantly, as pointed out by
the key challenges in this paper, not all data shared by the server
will bring privacy risks even when it is matched with specific key-
words (e.g., an email address belonging to a public institution or
the current user). From its evaluation results, S-HUSH/D-HUSH
is also corroborated to have both considerable false negatives and
high false positives, where only 126 out of 31,559 social apps were
reported by S-HUSH and merely eight out of 126 social apps were
confirmed by D-HUSH to be truly vulnerable. Thus, their findings
can greatly mislead the community’s understanding and not able to
reveal the real situation in the wild. Contrary to S-HUSH/D-HUSH,
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XPOChecker focuses on the over-delivered personal data of other
users during user-to-user connections. Based on the proposed in-
sights, XPOChecker employs the Privacy Discovery to effectively
identify the personal data of other users in mobile apps.

Secondly, S-HUSH/D-HUSH only cares about hidden sensitive
information. However, it is demonstrated that the presented sen-
sitive information can also bring about privacy risks when it is
transformed with non-injective data transformations. Compared
with S-HUSH/D-HUSH, this paper focuses on the inconsistency
between the delivered personal data and presented personal data
of other users and proposes the Risk Detection which effectively
identifies the concerned inconsistency based on its mathematical
essence, i.e., "non-injective" property. Therefore, S-HUSH/D-HUSH
is naturally limited in this aspect.

Finally, D-HUSH was adopted to verify whether the social apps
reported by S-HUSH were indeed vulnerable or not. However, as
discussed before, both semi-automated and automated dynamic
analysis are not suitable for verifying the results of XPOChecker.
Consequently, we adopt the sampling scheme to conduct the per-
formance validation of XPOChecker, which is believed to be able
to reflect the real performance of XPOChecker among the whole
dataset (i.e., 13,820 apps of 30 categories analyzed in our security as-
sessment). Compared to the performance of S-HUSH, XPOChecker
achieves 7x precision improvement (75.00% precision). Although
the precision of semi-automated D-HUSH can be regarded as 100%,
only eight social apps were confirmed to be vulnerable by it, which
misses a significant number of true positives in the wild and lead
to a low recall when compared to XPOChecker (96.77%).

Generally, without overcoming the key challenges solved by
XPOChecker, S-HUSH/D-HUSH is greatly limited to perform the
large-scale security assessment as conducted by XPOChecker. Fur-
thermore, S-HUSH/D-HUSH cannot unveil the landscape and sever-
ity of XPO risks due to its limitations, not to mention drawing the
five underlying lessons as learnt in this paper.

8 CONCLUSION
In this paper, we bring to light an insufficiently studied but criti-
cal privacy risk (i.e., XPO) in user-to-user connections. To better
understand this issue in the wild, we have systematically analyzed
it and designed XPOChecker, which overcomes several non-trivial
challenges to automatically identify it. With a security assessment
of 13,820 real-world Android apps, we revealed the severity of XPO
in addition to its landscape in the wild, which puts numerous mo-
bile users at serious privacy risk and even pose safety threats. The
existence of XPO risks in iOS apps is confirmed for the first time,
which shows that XPO risks can be more prevalent than thought.
Moreover, by launching the notification campaigns, we revealed
five underlying lessons learnt from XPO. It is believed that our work
can make up for the deficiency of the community’s understandings
and awareness of XPO risks and inspire future researches.
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