An Empirical Study of Web Resource Manipulation in Real-world Mobile
Applications

Xiaohan Zhang1’4, Yuan Zhang1’4, Qiangian Mo!#, Hao Xial**, Zhemin Yang1’4, Min Yang1’2’3’4,
Xiaofeng Wang>, Long Lu®, and Haixin Duan’

1School of Computer Science, Fudan University
2Shanghai Institute of Intelligent Electronics & Systems
3Shanghai Institute for Advanced Communication and Data Science
4Shanghai Key Laboratory of Data Science, Fudan University
3Indiana University Bloomington , *Northeastern University , " Tsinghua University

Abstract

Mobile apps have become the main channel for access-
ing Web services. Both Android and iOS feature in-
app Web browsers that support convenient Web service
integration through a set of Web resource manipulation
APIs. Previous work have revealed the attack surfaces of
Web resource manipulation APIs and proposed several
defense mechanisms. However, none of them provides
evidence that such attacks indeed happen in the real
world, measures their impacts, and evaluates the pro-
posed defensive techniques against real attacks.

This paper seeks to bridge this gap with a large-scale
empirical study on Web resource manipulation behaviors
in real-world Android apps. To this end, we first define
the problem as cross-principal manipulation (XPM) of
Web resources, and then design an automated tool named
XPMChecker to detect XPM behaviors in apps. Through
a study on 80,694 apps from Google Play, we find that
49.2% of manipulation cases are XPM, 4.8% of the
apps have XPM behaviors, and more than 70% XPM
behaviors aim at top Web sites. More alarmingly, we
discover 21 apps with obvious malicious intents, such as
stealing and abusing cookies, collecting user credentials
and impersonating legitimate parties. For the first time,
we show the presence of XPM threats in real-world apps.
We also confirm the existence of such threats in i0S
apps. Our experiments show that popular Web service
providers are largely unaware of such threats. Our
measurement results contribute to better understanding
of such threats and the development of more effective
and usable countermeasures.

1 Introduction

Nowadays, different Web services are usually integrated
together to provide users with more flexible and powerful
capabilities. These integrated services are mostly deliv-
ered to the mobile platform today, with multiple services

built into a single app. For the convenience of such
an integration, mainstream mobile platforms (including
Android and i0S) feature in-app Web browsers to run
Web content. Examples of the browsers include Web-
View [9] for Android and UIWebView/WKWebView for
iOS [8, 10]. For simplicity of presentation, we call them
WebViews throughout the paper.

Based on WebViews, mobile systems further provide
app developers with Web resource manipulation APIs
to customize browser behaviors and enrich Web app
functionalities. For example, Android and iOS both have
an API named evaluateJavascript that allows host apps
to inject JavaScript code into the Web pages and get
the result. However, these Web resource manipulation
APIs lack origin-based access control, which means
application code can manipulate Web resources from all
origins managed by the WebView through these APIs.
For example, if a host app has a WebView which loads
“www.facebook.com”, then it can use evaluateJavascript
API to run JavaScript in the Facebook Web pages and get
user data from Facebook. As a result, this capability of
cross-origin manipulation would lead to severe security
and privacy threats to user data.

Some previous work have discussed this kind of
threats in the context of integrating WebView to mobile
apps. Luo et al. [32, 33] showed that malicious apps
can attack WebView by injecting JavaScript code,
sniffing and hijacking Web navigation events [32], and
hijacking touch events at the Web pages [33]. Chen et
al. [16] and Mohammed et al. [43] also demonstrated
OAuth protocol can be attacked by a malicious app.
Meanwhile, defensive mechanisms [41, 43, 20] have
also been proposed to regulate the accesses from host
apps to Web resources.

Despite the existing works, there lacks an empirical
study to understand how severe this problem is in real-
world. In fact, none of existing work provides evidences
for the presence of such threats. Instead, they discuss
the attacks conceptually. Furthermore, existing defensive

systems are evaluated with hand-crafted attack samples,
without considering the special requirements in real-
world deployment. Overall speaking, lacking such an
empirical study may make us misunderstand the impact
of the problem and limit the practicalness of proposed
solutions.

This paper seeks to perform a large-scale empirical
study on real-world apps to systematically understand
the existence and impact of such threats. Since Android
apps are easy to be collected in a large volume and
Android platform dominates the mobile market, our
empirical study is based on Android platform.

First, since not all manipulations cause security is-
sues, we need a clear definition about the threat in
Web resource manipulation. Inspired by the same-
origin policy in Web platforms, we define the threats
in Web resource manipulation as cross-principal
manipulation (XPM). In our definition, only manipu-
lating code from a different principal to the manipulated
Web resource will be flagged as suspicious.

Second, to allow measuring the Web resource manip-
ulation problem on a large scale, we further design a tool
to automatically recognize XPM behaviors in real-world
apps. The key challenges are that: there are multiple
principals inside an app; there is no obvious way to
extract the principal of the manipulating code; it is hard
to determine whether the principal of the manipulating
code and that of the manipulated Web resource are the
same. Our proposed tool, named XPMChecker, features
several new techniques to automatically recognize XPMs
in apps. Note that XPMChecker is not aimed to reliably
detect all possible cross-principal manipulations. In-
stead, it is designed for a large-scale measurement study.
Thus, we do not consider a future attacker who tries to
evade XPMChecker.

Finally, we apply XPMChecker to analyze 80,694
apps from 48 categories in Google Play. Our evaluation
shows that XPMChecker achieves high precision and
recall in recognizing XPM behaviors. To systematically
understand the threats of Web resource manipulation,
we conduct several experiments and studies from these
perspectives: the prevalence of the XPM behaviors, the
breakdown of XPM behaviors, the awareness of such
risks to service providers and the implications to current
defenses. Our study leads to several insightful findings
for the community to understand the impact of Web
resource manipulation problem, confirms the threat of
XPM behaviors with real-world samples and calls into
rethinking of existing defensive mechanisms.

Findings. We find that 49.2% of manipulation points
are cross-principal, 4.8% of apps have XPM behaviors,
63.6% of cross-principal manipulation points originate
from libraries, and more than 70% of XPM points manip-
ulate top popular Web services. We also find that most of

XPM behaviors are necessary to improve the usability for
mobile users, some XPM behaviors implement OAuth
implicit flow in an unsafe way, and we confirm the Web
resource manipulation behaviors with obvious malicious
intents for the first time in real-world Android apps
and iOS apps. More specifically, we find apps can
abuse Web resource manipulation APIs to steal cookies,
collect user credentials and impersonate the identities
of legitimate parties, and a large number of users have
been affected. We also perform several experiments to
test the awareness of such risks to service providers,
and find that most Web service providers are unaware
of these risks and can not effectively prevent users from
accessing sensitive pages in WebView. Finally, our
measurement results also actuate us to rethink existing
defensive mechanisms and propose new suggestions for
future defense design.
In summary, we make the following contributions.

e We define the threats in Web resource manipula-
tion as cross-principal manipulation (XPM), and
perform a large-scale study of such threats in real-
world apps.

e We design an automatic tool which overcomes
several non-trivial challenges to identify cross-
principal manipulations in Android apps.

e We present new results and findings based on a
study of 80,694 apps. Our results provide strong
evidences for the presence of XPM behaviors with
obvious malicious intents in real-world apps, and
show that this problem is more severe than we think
and exists in both Android and iOS. Our findings
and evaluations on current defense mechanisms also
bring new insights for future defense design.

2 Web Resource Manipulation

This paper seeks to understand the threats of Web re-
source manipulation in real-world apps. Although this
kind of threats have been conceptually described in
existing work [32, 33, 43, 16], none of them system-
atically defines this problem. To support a large-scale
measurement study, we need to clearly define the threats
in Web resource manipulation.

2.1 Motivating Example

We use a motivating example to ease the illustration of
the security issues during Web resource manipulation.
As shown in Figure 1, there are two apps, where app
A is the official Facebook app and app B is a stand-
alone chatting app called “Chatous”. App B incorporates
Facebook Login SDK to support user login with their

é www.facebook.com 3

4

WebView

getCookie(“facebook.com”)

| [C1:com.facebo
| ok.katana.
I BtN

internal. chatous.managers.

I
C2:com.facebook. C3:com.chatous. |
Utility FacebookManager :

APP A: Facebook
Official App

APP B: Chatous app
and embedded Facebook SDK

Figure 1: A motivating case where three classes in two
apps use CookieManager.getCookie API to get cookies
from www.facebook.com.

Facebook accounts. There are three Java classes (C1, C2
and C3) in the two apps which use WebViews to load
www.facebook.com and use CookieManager.getCookie
API to get cookies from www.facebook.com.

For C1 which belongs to the official Facebook app
and C2 which belongs to the official Facebook Lo-
gin SDK, it is quite normal for them to access cook-
ies from www.facebook.com. However, since C3 be-
longs to “Chatous” which is a different party to Face-
book, it is quite susipicious for C3 to get cookies from
www.facebook.com. After a manual inspection on C3,
we confirm that “Chatous” abuses Facebook cookies to
collect user data in Facebook (more details are discussed
in Section 4.3.3).

The insight of this example is that when Web resources
are manipulated by app code, if the manipulating code
and the manipulated Web resource belong to the same
party, it can be regarded as quite normal. However,
if they do not originate from same party, it may bring
threats to the manipulated Web resources.

2.2 Problem Definition

The above example demonstrates the threats when Web
resource manipulation APIs are used by a security prin-
cipal to manipulate Web resources belong to another
security principal. To clearly define this problem, this
section introduces some new concepts.

Cross Principal Manipulation. We define where app
code use Web resource manipulation APIs to manipu-
late Web resources as Web Resource Manipulation
Points. At each Web resource manipulation point,
there are two participated parties, i.e. the manipulating
code and the manipulated Web resource. We desig-
nate the security principal of the manipulating code

as App Principal (AP), and the security principal
of the manipulated Web resource as Web principal
(WP). Inspired by the same-origin policy in Web plat-
forms, we study the threats in Web resource manip-
ulation by considering both the app principal and the
Web principal. Specifically, we define the concept
of Cross-Principal Manipulation (XPM) of Web
resources, when the app principal is not the same as
the Web principal at a Web resource manipulation point.
According to its definition, whether a Web resource
manipulation point (named as mp) is XPM can be rec-
ognized with the following equation.

IS XPM(mp) = APy, # W P, (1)

Threat Model. This paper studies the threats in Web
resource manipulation. We consider the host app is not
trusted, i.e. it may attack the Web resources by stealing
sensitive data, breaking code/data integrity, etc. In our
threat model, there are two kinds of attackers in the host
app: the host app itself and the incorporated third-party
libraries/SDKs. We assume the underlying operating
system and Java runtime is trusted and not compromised.
A fraudulent attacker may use low-level techniques such
as directly manipulating the process memory, to evade
analysis and detection. However, we do not consider
such low-level attacks that may be performed by host
apps, since Web resource manipulation APIs are widely
supported by mainstream mobile platforms. This pa-
per focuses on measuring the security impact of Web
resource manipulation APIs in real-world applications,
while does not aim to study all kinds of threats in app-
web interaction, which has been well-studied by existing
work [32, 33, 17, 23, 36, 48].

Besides, we only consider Web resource manipulation
problem in apps using system-provided Web browsers,
i.e. WebView on Android and UIWebView/WKWe-
bView on iOS. Certainly, host apps may use hybrid
frameworks such as Cordova [1] or customized browsers
such as customized Chromium [7], to integrate Web
services. Considering WebViews has standard interfaces,
good compatibility and widely used by most apps, our
study mainly focuses on WebView platform. Actually,
a similar definition of cross-principal Web resource ma-
nipulation can be given for these hybrid platforms.

2.3 Web Resource Manipulation APIs

Figure 1 gives an example of Web resource manipulation
using CookieManager.getCookie API in Android plat-
form. However, the cross-manipulation problem is not
specific to this API and not limited to Android platform.
Actually, both Android and iOS provide plenty of Web
resource manipulation APIs that can be used by the
host apps to manipulate the integrated Web resources,

Table 1: Representative Web resource manipulation APIs on Android and iOS.

Web Resources Android WebView iOS UIWebView iOS WKWeb View
Local Storage CookieManager.getCookie NSHTTPCookieStorage WKWebsiteDataStore
Web Content evaliloaigﬂrjiziript stringByEvaluatingJavascriptFromString evaluateJavascript
Wb AddTeSs i douemdeUnLoading \ \
Network Traffic shouldInterceptRequest shouldStartLoadWithRequest decidePolicyForNavigationAction,

decidePolicyForNavigationResponse

1

void loadUrl(String url) is an API that loads the given “url”. However, it can also be used to load JavaScript into the Web page when the “url” is some JavaScript code.

In this paper we only consider the latter usage as Web resource manipulation API, and name it “loadUrlJs” to differ from the former usage.

including quite sensitive resources, such as local storage
and network traffic.

To better understand the impact of the problem of
cross-principal Web resource manipulation, we perform
a thorough study of the WebView APIs provided by
Android and iOS platform. According to the type
of the manipulated Web resources, we classify these
APIs into the following four categories and select some
representative APIs for both platforms in Table 1.

1. Local Storage Manipulation APIs. WebView may
keep sensitive data on the local storage of the
device, such as HTTP cookies, Web Storagel and
Web SQL Database. For example, attackers can
use CookieManager.getCookie(String url) to get the
cookies for any domain specified by “url”

2. Web Content Manipulation APIs. Web content
includes HTML, JavaScript and CSS of Web sites.
For example, attackers can use evaluateJavascript
API to inject JavaScript code into Web pages and
get the privileges of the injected domain.

3. Web Address Manipulation APIs. Web address is
the current URL for the WebView which contains
quite sensitive information. For example, attackers
can use shouldOverrideUrlLoading(WebView view,
String url) to intercept the URL and extract the
access token for OAuth implicit flow authorization.

4. Network Traffic Manipulation APIs. These APIs
can provide attackers with the ability to monitor/-
modify network traffics between the WebView and
the remote server.

From Table 1, we can conclude that both Android and
10S provide powerful APIs for developers to manipulate
quite sensitive Web resources. A study about how these
APIs are used by developers is quite urgent to help
us understand its security implications in real-world.

'Web storage includes localStorage and sessionStorage (see http
s://wuw.w3.org/TR/webstorage/). This paper refers any data
saved on the device by a WebView as “Local Storage”, not only the
data saved by HTMLS localStorage API.

Considering that Android is the most popular mobile
platform and convenient to collect a large volume of
apps, we base our empirical study on Android.

3 XPMChecker

To support a large-scale empirical study of Web resource
manipulation behaviors in real-world apps, this paper
designs an automatic tool, named XPMChecker to rec-
ognize this behavior in apps. This section first describes
the challenges met in automatically checking of cross-
principal manipulation behaviors and then details the
design of XPMChecker.

3.1 Challenges and Ideas

According to the definition of XPM, we need to check
whether app principal and Web principal are the same.
However, it is non-trivial to automatically recognize
cross-principal manipulation of Web resources. It at least
faces the following challenges.

o Vague App Principal. According to same-origin
policy, the security principal of a Web resource is
identified by a triple (i.e. protocol, host, port).
However, there lacks a way to name the security
principal of app code. Meanwhile, host apps often
incorporate third-party libraries and SDKs, making
it quite challenging to identify the principals for
different app code.

e Naming Diversity. Web principal and app principal
are extracted from different sources and use dif-
ferent naming conventions for their identity, thus
two kinds of naming diversity are introduced: poly-
morphism and abbreviation. Polymorphism is that
the Web resource and app code may come from
the same provider but they use different terms as
their identities. Abbreviation is also very common,
e.g. both “facebook” and “fb” represent the same
company. Obviously, it is a huge challenge to

https://www.w3.org/TR/webstorage/
https://www.w3.org/TR/webstorage/

correctly determine whether the Web principal and
app principal represent the same party.

Main Ideas. After manually analyzing several apps
with Web resource manipulation behaviors, we learn
some insights to design XPMChecker. Basically speak-
ing, our solution is composed of the following two ideas.

e Using code identity information to indicate app
principal. Although there is no existing identifiers
to represent app principal, we find some indicators
extracted from the code can represent app principal.
For example, we can use Java package name, app
name, etc. Furthermore, we could recognize third-
party libraries in an app and use different app
principal indicators based on their code.

e Leveraging search engine to compare Web principal
and app principal. 1t is hard to automatically
determine whether a Web principal and an app
principal belong to the same party. Our idea is to
leverage search engine knowledge. The insight is
that the search results for a Web principal and an
app principal should be highly related if they belong
to the same party.

3.2 Design Overview

Based on the above ideas, we design and implement
XPMChecker which is capable of automatically rec-
ognizing XPM behaviors in real-world Android apps.
Figure 2 presents the workflow of XPMChecker. Overall
speaking, XPMChecker is composed of the following
three key components.

e Static Analyzer accepts an Android APK file as
input, locates all possible Web resource manipula-
tion points and collects manipulation information
for each manipulation point. The manipulation
information include the manipulated Web URL and
manipulating context. Static Analyzer records all
the information into a database for further analysis.

e Principal Identifier identifies Web Principal and
App Principal for each manipulation point with
the manipulation information in the database.

e XPMClassifier gives a final decision about whether
a Web resource manipulation point is cross-
principal or not by leveraging nature language
processing techniques and search engines.

Since our study mainly targets Android, XPMChecker
is implemented for Android. Similarly, our methodology
also works for other platforms such as iOS. We present
the details of XPMChecker in the following.

Table 2: The selected 9 Web resource manipulation APIs
to study.

API Manipulated Web Resource ~ API Type

CookieManager.getCookie Local Storage 1
loadUrlJs, evaluateJavascript Web Content 11

onPageFinished, onPageStarted, Web Address 1L I

onLoadResource

shouldOverrideUrlLoading! Web Address 1T
shouldOverrideUrlLoading? Network Traffic I

shouldInterceptRequest Network Traffic II, I

! boolean shouldOverrideUrlLoading (WebView view, String url), before API level 24.
2 boolean shouldOverrideUrlLoading (WebView view, WebResourceRequest request), after
API level 24.

3.3 Static Analyzer

The static analyzer first finds all the manipulation points
for each input APK file, and extracts the manipulated
Web URL and manipulating context for each manipula-
tion point. The static analyzer is implemented based on
Soot framework [28] and Flowdroid [11].

Build ICFG. Each APK file is parsed and then an
inter-procedure control flow graph (ICFG) is built. Some
Web resource manipulation APIs are actually callbacks
that are implicitly called by the system, thus edges
representing the implicit invocations are added to the
ICFG.

Locate Web Resource Manipulation Point. Web
resource manipulation points are located by traversing
the ICFG to look for the the signatures of Web resource
manipulation APIs. We thoroughly study the official
document of Android WebView APIs [9] and their us-
ages in real-world apps. Finally, as listed in Table 2, we
choose 9 APIs that manipulate sensitive Web resources
to perform the study. In real-world apps, there are some
API invocation sites with no manipulated Web resources
actually. For example, some apps just override shoul-
dOverrideUrlLoading APl and call its super method
using “super(this)” without any other behaviors. We use
a forward data flow analysis to filter out these points.

3.3.1 Extract Manipulated Web Resource URL

It is non-trivial to extract the manipulated URL at each
manipulation point, as it is highly dependent on the
specific API. We study these manipulation APIs and
classify them into the following three basic types.

e Type I. The URL is the parameter for such ma-
nipulation API, For example, the manipulated URL
for CookieManager.getCookie(String url) is its first
parameter, as showed in Listing 1.

e Type II. The URL should be extracted from the
invoked WebView instance. For example, in Listing
2, the manipulated URL of evaluateJavascript is

Input
APK
A

A
A\

manipulated Web

URL principal

Static Principal > .
P XPMClassifier
Analyzer - - Identifier >

manipulating App

context principal

— — —

API Model

Figure 2: Basic workflow of XPMChecker. XPMChecker is composed of three components to recognize XPM
behaviors in Android apps. First, Static Analyzer parses input APK files and collects Web resource information into a
database. Second, Principal Identifier extracts both Web principal and app principal for each manipulation point. At
last, XPM Classifier recognizes XPM behavior by leveraging search engine knowledge.

the string “www.google.com” loaded by its base
WebView instance.

e Type III. The URL is passed as a callback param-
eter, and can not be statically obtained. Listing 3
shows an example of such API. For shouldOver-
rideUrlLoading API, the “url” is a callback parame-
ter and can only be determined at runtime. However
it can be inferred from the code control structure
(i.e. the if conditions in line 2 and line 5).

1 CookieManager cm = new CookieManager ();
2 cm.getCookie()

Listing 1: Type I, URL from a parameter.

1 WebView wv = new WebView(this);

2 // some code

3 wv.loadUrl ()

4 // some other code

5 wv.evaluateJavascript (D I

Listing 2: Type II, URL from base WebView instance.

1 boolean shouldOverrideUrlLoading (WebView
webview, String url){

2 if (url.startswith())
{
3 // some code
4 }
5 else if (url.equals(
DR
6 // some other code
7 }
8 // other code
9 1}

Listing 3: Type III, URL from a callback parameter.

URL Extraction. Table 2 presents the types for the
selected 9 manipulation APIs. We use different methods
to extract manipulated Web resource URL according to
the API type. For Type I API, the URL is the first
parameter of the API. For Type III API, the URL can
be inferred from the branch statements in its code. We
do a forward data flow analysis from the “url” parameter,
and collect all branch statements having string operations
with the “url” parameter as the inferred positions.

It is more complicated to handle Type II APIs, where
the manipulated URLs are actually loaded by the base
WebView instances. There are two cases to determine the
URL of the WebView instance: statically loaded URLs
and dynamically loaded URLs. Statically loaded URLs
are loaded with LOAD_URL APIs, including loadUrl,
loadDataWithBaseURL, postUrl, etc. In this case, we
use the ICFG to find invocations of LOAD_URL APIs,
and the manipulated URL can be extracted from their
parameters. Dynamically loaded URLs are loaded when
the users navigates from one page to another. Similar to
Type III APIs, the dynamic URLs are inferred from the
control flow structure of the code.

String Analysis. After we know the position of the
manipulated URL, we then use string analysis to reveal
the string value. Specifically, we first do backward
slicing along the ICFG to collect all instructions used
to construct the URL. Then, we forward traverse the
program slice to reconstruct the string-related operations.
We try to calculate the string value by modeling common
string operations such as initialization and concatenation
of StringBuilder and StringBuffer. Besides, Android-
specific APIs such as reading strings from asset files and
SharedPreferences are also modeled.

Since we focus on integrated Web services, URLs with

| Code Union Signature |

VAN

Class Class
Signature Signature
o b
I Method 1 1 Method 1 Method
| Signature | | Signature e *| Signature !

Figure 3: Use Merkle tree to represent manipulating code
signature.

protocols other than HTTP/HTTPS are not considered
and filtered out. Furthermore, there may be more than
one manipulated Web URL at one manipulation point,
such as the example in Listing 3. These URLs are all
extracted and saved into the database for further analysis.

3.3.2 Extract Manipulating Context

To identify the app principal, we need to collect some
context information at each manipulation point. Specifi-
cally, the following information is collected.

e META, the meta-information of the app, including
application package name and developer informa-
tion;

e DP, the declaring package name of the manipulating
code;

e SIG, the signature for the manipulating code;

The META and DP information can be directly extracted
from the APK file and app market. The SIG is a signature
used to identify the provenance of the manipulating code,
i.e. the host app or a third-party library. To calculate the
code signature, we first need to determine the boundary
of the manipulating code and then extract its signature
based on code feature inside the code boundary.

Manipulating Code Union. We introduce the code
union concept to represent the code originates from the
same principal. Considering the problem context of our
paper, we define the code union by grouping code that
manipulates the same WebView instance. Specifically,
it contains the class of the manipulation point, classes
that are connected with the same WebView instance, and
classes of the Java objects that have been injected into
WebView through addJavaScriptInterface APL

Manipulating Code Signature. We use a variant
of Merkle trees [35] with depth of 2 to represent the
manipulating code signature (as shown in Figure 3). In
these hash trees, every non-leaf node is labeled with the
hash of its child nodes. The first layer of the tree is the
signatures for the classes in the same code union. The
second layer of the tree is the signatures for the methods

in the parent class. The method signature is calculated
by hashing all the Android APIs it invoked. We only
consider the Android APIs listed by PScout [12].

When comparing two manipulating code signatures,
we first need to judge whether they use the same manipu-
lation API. If they invoke different manipulated APIs, the
manipulating code signatures are thought to be different.
Otherwise, we compare the Merkle trees for the two
manipulating code signatures from top to bottom.

In summary, the static analyzer module locates all ma-
nipulation points in each APK, extracts the manipulated
URL and manipulating context for each point, and saves
this information into a database.

3.4 Principal Identifier

Based the extracted manipulation information at each
manipulation point, we further need to identify the Web
principal and app principal.

Identify Web Principal. A naive idea is to use the
Web origin (a triple of protocol, host and port) as the Web
principal. Since the protocol and port element defined in
the Web origin are hard to compare with app principal,
our solution uses the domain name at each manipulation
point as the Web principal.

Before extracting domains from Web resource URLs,
we need to normalize the extracted URLs as there may
be some abnormal URLSs, such as short URL, IP address.
The domain names of short URLs and IP addresses can
be retrieved by dynamically loading them or resolved
with reverse DNS lookup. For domains which are
common cloud sub-domains, we extract their domain
names as the sub-domains or paths to the host server.
For example, for the URL ‘“s3.amazonaws.com/X” or
“Y.s3.amazonaws.com”, we extract “X’’ and “Y” as their
domains (Web principals).

Identify App Principal. Unlike Web principals, there
is no existing way to construct app principal. Our
solution is to leverage code features to indicate the
security principal of the manipulating code. Generally,
manipulating code may originate from two sources: the
host app or a third-party library. If the code is from the
host app, we use META of the app as the app principal
indicator. Otherwise we use the declaring package name
DP instead. Our insight is that Android developers
usually include reverse domain name in the package
name of their code.

To distinguish library code and host app code, we use
the signature for the code union (SIG). Our observation
is that library code tends to appear in many apps. If
the SIG appears in only one app, or apps from the
same developer, the code union belongs to the host app.
Otherwise, if it appears in more than one app from
different developers, it originates from a library.

Obfuscated Package Name Recovery. The package
name of the library may be obfuscated in an app, thus
directly using the package name is not accurate. Con-
sidering the fact that not all apps obfuscate their code,
we can use non-obfuscated package name of the same
library (which has similar SIG). In this way, most of the
obfuscated package names are recovered for libraries.

Currently, for each manipulation point, we can extract
its Web principal and app principal. The next step is to
determine whether AP,,, and WP,,, represent the same
security principal.

3.5 XPMClassfier

According to our definition in Equation (1), cross-
principal manipulation of Web resources is recognized
by judging whether a Web principal and an app principal
are the same. However, it is hard to automatically make
such decisions. For example, if the app principal is “fb”
and the Web principal is “facebook”, it is obvious to
recognize them as same principal by manual inspection
while there is no straightforward way to automatically
give the same result.

As it is difficult to strictly tell whether two princi-
pals are the same, we perform some relaxation on this
problem. Specifically, we transform the strict definition
of cross-principal manipulation in Equation (1) into the
following definition where Sim is the similarity of the
two principals. If the similarity proceeds a predefined
threshold 6, we think the two principals are the same.
Otherwise, the two principals are thought to be different.

IS XPM(mp) = Sim(APyp,WP,,) >0 (2)

The key to recognize cross-principal manipulation
turns to calculate the similarity of two principals. Our
idea is to take advantage of search engine knowledge.
The insight is that more similar are the two princi-
pals, more similar results should be searched for them.
Thus, we search the two principals in the search engine,
and calculate the similarity between the search results.
Specifically, the classification of XPM is performed in
the following steps. Note that in rare cases where search
engine returns no results, we use literal edit distance
between Web principal and app principal to calculate the
similarity.

1. Firstly, we remove noise words in < AB,;,,, W Py, >
such as suffixes [5] and stop words [6] (e.g. remove
“com” and “get” from ‘“get.appdog.com”), since
they make little contribution to XPM classification.
After that, we get AF,,, and WF,,,.

2. Secondly, we use AP, and WF,,, as search key-

words to query Google search engine and get search

results as R, and R,,, respectively. All the results
are translated into English using Google Translate.

3. Thirdly, we segment the words in the R, and R,
using the bag-of-words model. Specifically, we
only keep the multiplicity and ignore grammar and
word order. We normalize each word (term) and
transform their term frequencies into two vectors:
Aand W.

4. Fourthly, we calculate the similarity of the two
principals as cosine similarity between the two
vectors using the following equation.

n
Y AW
Sim(APyyp, WPyp) = ——— 3)

n n
\ LA L W?
i=1 i=1

5. Finally, we compare the calculated similarity with
a threshold 6. If the similarity does not exceed
the threshold, we regard the Web principal and app
principal are from different parties and classify the
manipulation point (mp) as XPM.

4 Empirical Study

Our empirical study is performed on a large dataset
of apps collected from Google Play during July 2017.
These apps were selected with at least 5,000 installations
across 48 categories, and 84,712 (out of 108,477) apps
were successfully downloaded. To the best of our
knowledge, this study is the first to understand the Web
resource manipulation behaviors with large-scale real-
world apps.

Analysis Statistics. We use XPMChecker to analyze
these apps on a CentOS 7.4 64-bit server with 64 CPU
cores (2GHz) and 188 GB memory. We start 9 processes
to parallel the analysis and set timeout of 20 minutes for
each app. In all, the analysis takes 233 hours to process
the whole dataset, that is about 10 seconds per app. The
static analyzer module of XPMChecker successfully pro-
cesses 80,694 (95.3%) apps, and the rest apps either run
out of time or fail to be analyzed by Soot or FlowDroid.
For the successfully analyzed apps, XPMChecker finds
13,599 apps with 29,448 manipulation points, and 3,858
of the apps contain 14,476 XPM points. The detailed
data is showed in Table 3.

4.1 Evaluation of XPMChecker

Evaluation of Static Analyzer. The static analyzer
module is used to find all manipulation points and
extract manipulation information (i.e. manipulated Web
URL and manipulating context) for further principal

Table 3: Overall result of our study.

Category #

All Apps 84,712
Finished Apps 80,694
Apps with Manipulation Points 13,599 (29,448)!

Apps with XPM Behaviors 3,858 (14,476)

! The number in the bracket represents the number of
manipulation points.

identification. To evaluate the effectiveness of static
analyzer, we randomly select 50 successfully analyzed
apps and manually label all the manipulation points
for these apps including manipulation information. In
total, we manually find 36 manipulated points, while
XPMChecker correctly labels 33 of them. The left 3
cases are failed to extract the manipulating Web URLs
due to complex string encoding and deep inter-procedure
call. As a result, the static analyzer module successfully
recall 91.7% of all manipulation points with correctly
labeled manipulating information. Further improvement
can be achieved by enhancing the string analysis which
is a orthogonal research direction [18, 29].

Evaluation of Principal Identifier and XPMClassi-
fier. For each Web resource manipulation point, Prin-
cipal Identifier extracts the Web principal and app prin-
cipal, then XPMClassifier judges whether this is XPM
by leveraging search engine knowledge. To evaluate the
performance of the two modules, we randomly select
1,200 manipulation points identified by the static ana-
lyzer, and manually label them as XPM or not. The
performance of XPMClassfier depends on the threshold
6. To set 0, we select 1,000 labeled manipulation points
from our ground truth and draw the receiver operating
characteristic (ROC) curve by trying different thresholds
(as shown in Figure 4). Our aim is to gain the balance
between false positive rate (FPR) and false negative rate
(FNR), so we choose the threshold at the equal error rate
(EER) point, that is 0.3134.

We use the left 200 manipulation points to test the per-
formance of Principal Identifier and XPMClassifier. As
showed in Table 4, our tool finds 94 XPM points, while
93 of them are true positive. Therefore, the precision
and recall of Principal Identifier and XPMClassifier are
98.9% and 97.9% respectively.

We further manually inspect the false positives and
false negatives. The cause for the false positives is the
lack of search result for some Web principals from small
websites. Since these Web sites are not popular, these
false positives do not affect the overall result and finding.
The false negatives are caused by unofficial apps whose
app principals are highly related to those of the official
ones. For these cases we need to use more complex

EER point
~7

0.8

0.6

0.4

True Positive Rate

0.21
—— ROC
----- Equal Error Rate

0.0 T T T T >
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4: ROC curve for varied 68 in XPMClassfier with
1000 manipulation points.

Table 4: Precision and recall of Principal Identifier and
XPMClassifier.
of Manually Labeled XPM 95

of Detected XPM 94
of True Positive 93
Precision 98.9%
Recall 97.9%

techniques to extract app principal. Considering the
recall rate is relatively high, we argue current design is
quite acceptable to perform a large-scale study.

4.2 Prevalence of XPM Behaviors

This section measures the prevalence of XPM behavior
in real-world apps. Our results consist of the following
findings.

Finding 1: 49.2% of manipulation points are cross-
principal. As shown in Table 3, XPMChecker finds
29,448 manipulation points, while 14,476 of them is
crossing principal, which means 49.2% of manipulation
points are cross-principal.

Finding 2: 16.9% of apps manipulate Web re-
sources, and 4.8% of apps have XPM behaviors. As
shown in Table 3, in all the successfully analyzed 80,964
apps, XPMChecker finds 13,599 apps that contain at
least one manipulation points, that is 16.9% of all apps.
Further more, XPMChecker finds 3,858 apps have XPM
behaviors, which is 4.8% of all apps.

Finding 3: 63.6% of cross-principal manipulation
points originate from libraries. As shown in Table 5,
our results show that 63.6% of cross-principal manipu-
lation points are from 88 libraries, covering 2,545 apps.
Meanwhile, 36.4% of the cross-principal manipulation
points belong to 1,414 apps. Note some apps may have

Table 5: XPM point distribution according to its location.

XPM Location # of XPM Points (%) # of Apps
Library 9,201 (63.6%) 2,545
App 5,275 (36.4%) 1,414
All 14,476 3,858

Table 6: Top 10 Web hosts that are cross-principal
manipulated.

rank manipulated host ‘ rank manipulated host

1 play.google.com 6 player.vimeo.com

2 market.android.com 7 maps.google.com
3 facebook.com 8 google.com
4 youtube.com 9 drive.google.com
5 docs.google.com 10 twitter.com

XPM behaviors in both its app code and library code.

Finding 4: More than 70% of XPM points ma-
nipulate top popular Web services. We collect the
manipulated Web host for all the XPM points and find
that more than 70% of them belong to top Web services,
such as Google, Facebook and Twitter. We list the top 10
manipulated Web hosts in Table 6.

Finding 5: Web contents and Web addresses are
the most commonly manipulated and cross-principal
manipulated Web resources. We count the manipula-
tion APIs used for all the discovered manipulation points
and present the result in Figure 5. We can see that load-
UrlJs and evaluateJavascript are the most frequently
used, which support JavaScript injection into Web pages.
Besides, APIs that can manipulate Web addresses, such
as shouldOverrideUrlLoading, onPageStarted are also
widely used, rendering that Web addresses are of high
interest for manipulating. We find getCookie API is quite
exceptional because it is widely used in manipulation
points but few are cross-principal.

onPageFinishedm:l
shouIdOverrideUrILoad—m
onPageStartlgsu:l
evaluateJavascriptm
onLoadResourceff |
shouldlnterceptRequestI]

getcookie]]

shouldOverrideUrILoad-l
ing(WebResource)
shouldlnterceptRequest”
(WebResource)

0 5000 10000 15000

B XPM points O non-XPM points

Figure 5: Manipulation API Usage.

4.3 Breakdown of XPM Behaviors

To further understand what XPM behaviors do in real-
world apps, we select some apps to study. In all, we
manually study all the 88 libraries in Table 5 which
cover 63.6% of all XPM behaviors, and randomly select
100 apps from the 1,414 apps. We classify these XPM
behaviors and present the results in Table 7.

Table 7: XPM behaviors in 88 libraries and 100
randomly selected apps.
Behavior % in libraries % in apps
Customizing Web services 56.8% 67.0%
Invoking local apps 30.7% 16.1%
Obtaining OAuth tokens 2.3% 4.6%
Malicious behaviors 0 0.9%
Other behaviors 5.7 % 8.2%
False positive 4.5% 3.2%

! Note that one app may have several XPM behaviors.

We find that the most popular XPM behaviors we
found are customizing Web services and invoking local
apps. Furthermore, we find several apps exhibiting
obvious malicious behaviors, and it is the first time that
we can confirm the threat of Web resource manipulation
in real-world apps. In the following, we further present
our findings in dissecting these XPM behaviors.

4.3.1 Necessary XPM Behaviors

Finding 6: Most of XPM behaviors are necessary to
improve the usability for mobile users. Our manual
analysis finds that about 90% of the XPM behaviors
provide new functionalities. Here we give some ex-
amples. Since Android WebView does not support
navigation control [2], we find many XPM behaviors
inject JavaScript code to add this feature. We also
find a library called “Android-MuPDF” which injects
JavaScript code into the Google cloud print page to help
users reduce the steps in using cloud print. Another
common use case of XPM behavior is to invoke local
apps. For example, the “org.nexage.sourcekit.mraid”
library uses shouldOverrideUrlLoading API to mon-
itor the loaded URLs. If the URLs are ads about apps, it
will invoke the local “Google Play” app to display the
advertised apps.

4.3.2 Unsafe XPM Behaviors

Finding 7: Some XPM behaviors implement OAuth
implicit grant flow in an unsafe way. We find some
XPM behaviors in 2 libraries and 10 apps implement

OAuth implicit grant flow, but in an unsafe way. Fig-
ure 6(a) shows the standard and secure OAuth 2.0 im-
plicit grant flow, where an external user-agent is used and
third-party app can only access data in step 1 and step 7.
However, we find XPM behaviors are used to implement
OAuth implicit flow as depicted in Figure 6(b). Instead
of using an external user-agent, the third-party app
uses an internal user-agent, i.e. a WebView to do the
OAuth implicit grant. Then the third-party app uses
Web resource manipulation APIs to intercept the access
token from the WebView in step 5 in Figure 6(b). For
example, we find a library called “com.magzter” that
uses onPageFinished API to intercept access token
when doing OAuth on Twitter.

According to previous research on OAuth security [41,
16, 43] and RFC OAuth 2.0 specification [4], it is unsafe
to use internal user-agent. Specifically, the OAuth 2.0
specification [4] says “native apps MUST NOT use
embedded user-agents”. The security concern is that
using internal user-agent means that the whole user-
agent can be controlled by the host app, thus all data
in OAuth steps can be manipulated by the host app.
As shown in Figure 6(b), data in step 1 to step 5 can
all be manipulated by the host app, including client
ID and redirect URI, user credentials, client name and
icon, authorization scope and access token. All these
data are highly sensitive and the leakage or modification
on these data can cause severe security problems. Un-
fortunately, although well-studied and documented, our
findings show that insecure OAuth implementations with
WebViews are still very common.

4.3.3 Malicious XPM Behaviors

Finding 8: We confirm the Web resource manip-
ulation behaviors with clearly malicious intents for
the first time. As shown in Table 7, our study leads
to the discovery of some apps with malicious XPM
behaviors. To find more malicious XPM behaviors,
we analyze more apps in the 1,414 apps that have
XPM behaviors. We write scripts to prioritize XPM
behaviors that manipulates either top Web services such
as Facebook, Google, or URLs contain very sensitive
words, such as “oauth”, “token”, “password”. Then we
select 200 apps for manual study, and finally we confirm
22 malicious XPM behaviors in 21 distinct apps (listed in
Appendix A). Based on their malicious aims, we classify
these apps into three categories: impersonating relying
party in OAuth (A1, 2 apps), stealing user credentials
(A2, 6 apps) and stealing cookies (A3, 14 apps). Note
that one app named InstaView exhibits both A1 and A2
behaviors. We have reported these apps to Google Play,
and most of these apps have already been removed.

Al: Impersonating Relying Party in OAuth. We find

1. client ID and
redirect URI
2. OAuth request

. ———
OAuth

Service

—————— | .

4. client name and icon | provider

Third 3. user credentials
User-agent
party app

5. authorization scope

. K -
7. access token 6. redirect URI and

access token

(a) standard and secure implicit grant

g Third]]al’ty app 1. client ID and redirect URI with
OAuth request

2. user credentials
[——— "] OAuth
User-agent / Service
3. client name and icon

provider

4. authorization scope

5. redirect URI and access token

(b) insecure implicit grant implementation

Figure 6: OAuth 2.0 implicit grant. (a) is the standard
and secure implicit grant flow using external user-agents
(such as external browsers), where the third-party app
can only control data in step 1 and step 7. (b) shows
common insecure implementation using internal user-
agents such as WebViews, where the third-party app is
able to manipulate all data from step 1 to step 5.

apps impersonate another relying party in OAuth by
providing the client ID of the victim in step 1 (see
Figure 6(b)) and intercepting access token of the victim
in step 5. For example, Instaview is a visitor tracking
app that tells users who has viewed their Instagram ac-
count. It has 1,000,000-5,000,000 installations in Google
Play. To provide users with the visiting information, it
asks users to grant several permissions by OAuth in a
WebView. However, it uses the client ID of another app
named Tinder. After user authorization, it intercepts the
access token for Tinder using shouldOverrideUrlLoad-
ing APIL. After that it continues to impersonate Tinder to
access user data from the authorization server Instagram.

By using the client ID and access token of another app,
Instaview bypasses registration auditing and resource
usage monitoring from Instagram. One may think that
users would refuse to authorize Instaview when they see
the permissions are granted to Tinder. Actually, we
find this app receives more than 27,000 five stars in
Google Play. Furthermore, since Instaview controls the
WebView, it can modify the name and icon in step 3 in
Figure 6(b) to cheat users.

A2: Stealing User Credentials. Apps in this category
inject JavaScript code to sensitive Web pages, such as
login page and OAuth authorization page to steal user
credentials. For example, Adkingkong is an app for

users to buy advertisements. This app has 500,000 to
1,000,000 installations in Google Play. This app asks
users to login with their Google accounts in a WebView.
However, when users input their emails and passwords,
it uses loadUrlJs API to inject JavaScript code into the
login page and steals user credentials. The Instaview app
described above also steals user credentials in step 2 of
Figure 6(b) using similar methods.

A3: Stealing and Abusing Cookies. We find sev-
eral apps using XPM to steal cookies and abuse these
cookies. For example, Chatous is an app for users to
randomly chat with real people. Its installation count is
about 10,000,000 to 50,000,000. It incorporates Face-
book OAuth SDK for users to sign in with their Facebook
accounts. When Facebook official app is not installed on
user devices, Facebook SDK uses a WebView to do the
OAuth. After user login, Facebook cookies will be saved
into the local storage of WebView. We find that Chatous
gets Facebook cookies using CookieManager.getCookie
API and directly invokes Facebook APIs using these
cookies to get the user friend list and send invitation
messages to all the friends of the user. Actually, without
Facebook cookies these APIs are invisible to third-party
apps such as Chatous. We also find other apps from
the same developer of Chatous exhibit similar behaviors,
including Melon, Kiwi, and Plaza. Both Melon and Kiwi
have 10,000,000 to 50,000,000 installations, and Plaza
has 1,000,000 to 5,000,000 installations.

Finding 9: Malicious XPM behaviors exist on both
Android and iOS. For the 21 apps with malicious
XPM behaviors, we try to look for their counterparts
on iOS platform and successfully find 8 apps have iOS
versions. Then we use network traffic analysis to check
if they have the same XPM behaviors as their Android
counterparts. Finally we confirm the Chatous i0S app
and other 3 apps from the same developers still have
the same malicious XPM behaviors (i.e. stealing and
abusing cookies).

Finding 10: Most of malicious XPM behaviors
target OAuth. In our results, 18 out of 21 apps with
malicious XPM behaviors attack OAuth, indicating that
OAuth is the mostly targeted Web service.

Finding 11: Malicious XPM behaviors have af-
fected a large number of users. For the 21 apps with
malicious XPM behaviors, we collect their installation
count in Google Play. We find that these 21 apps have to-
tal installations ranging from 29,885,000 to 131,220,000,
which means a lot of users are affected.

S Implications on Mitigation

Our empirical study shows that the Web resource ma-
nipulation capability of WebView brings huge risks to
service providers. This section studies the awareness of

such risks to service providers and reviews the defensive
mechanisms in securing Web service integration.

5.1 Risk Awareness to Service Providers

We study five popular Web service providers (Facebook,
Twitter, Google, Weibo and QQ) on whether they pro-
hibit users from accessing login and OAuth pages in
WebView. The result is shown in Table 8.

Table 8: Experiments on loading login/OAuth pages of
major Web service providers in WebView.

Service Allow login Allow OAuth
providers in WebView in WebView
Facebook Y Y

Twitter Y Y

Google Y N

Weibo Y Y

QQ Y Y

We find that these providers all support user login and
OAuth in WebViews, except Google who blocks OAuth
in embedded WebViews [3]. However, our further study
find that Google only uses “USER-AGENT” header to
identify WebViews, which can be easily manipulated
by host apps. For example, in Android, apps can use
setUserAgentString API to change the “USER-AGENT”
header to any value such as “Google Chrome”. We con-
duct such an experiment and successfully load Google
OAuth page in our controlled WebView. Thus, we draw
the following conclusion.

Finding 12: Most Web service providers are un-
aware of risks in Web resource manipulation, and can
not effectively prevent users from accessing sensitive
pages in WebView.

5.2 Evaluating Defensive Techniques

To secure Web service integration, several techniques
have been proposed. Based on our measurement results,
we rethink their solutions and conclude several findings.

Finding 13: Complete isolation of WebView is not
compatible to most apps. Complete isolation is a com-
mon way to protect host program from untrusted code.
LayerCake [41] protects the in-app WebView by running
WebView in a separate process and seamlessly sharing
UI display and events between the host app process and
the WebView process. Similarly, AdSplit [44] and Ad-
Droid [37] use process-level isolation to run WebView-
based advertisements in separate processes. Although
complete isolation is achieved between the host app
process and the WebView process, it can not further sup-
port WebView manipulation which requires accessing

WebView resources directly in the host process. In our
study, we find that most of XPM behaviors are necessary
to improve the usability for mobile users (see Findings
6). Thus, though complete isolation improves security, it
is hard to apply to existing apps.

Finding 14: Fine-grained access control is a must
for regulating Web resource manipulation APIs. Ac-
cess control is the fundamental way to regulate API
usage. To regulate Web resource manipulation APIs,
WIREFRAME [20] uses binary rewriting to replace
default WebView instances in apps with isolated and
mediated WIREFRAME instances. It further provides
origin-based access control policy, in which each app
is treated as a standalone origin and policies can be
expressed as whether an app from origin X can access
the Web resources of origin Y. In theory, WIREFRAME
is quite useful in preventing the abuse of Web resource
manipualation APIs found in our case studies. However,
we find the access control mechanism in WIREFRAME
is not fine-grained enough because they make the whole
app as a single origin, while our Finding 3 shows that
more than 60% of XPM behaviors are from libraries.
Thus, without fine-grained access control, systems like
WIREFRAME are hard to effectively protect Web re-
sources from being abused.

6 Discussion

The cross-principal manipulation problem proposed in
this paper is similar to the one faced by Web browser
extensions [27, 25], since both mobile apps and browser
extensions can manipulate Web resources. The common
challenge is how to identify suspicious ones. The most
significant difference we observe is that mobile apps may
manipulate content from their own servers or others,
while most browser extensions are designed to operate
on web content of others. Thus, different to vetting
suspicious browser extensions, a new challenge met by
our work is that we need a fine-grained analysis to
recognize whether the host app manipulates his own
resources or resources of other parties. Our work makes
non-trivial efforts by leveraging static analysis, code
similarity and search engines.

Currently, our work has a few limitations. Since
our static analyzer is based on several existing static
analysis tools [28, 11, 30], XPMChecker inherits lim-
itations of these tools. Besides, XPMChecker can not
prevent determined attackers from evading our analysis.
For example, they can hide the invocations of Web
resource manipulation APIs using Java reflection, or
obfuscate the identifiers for recognizing Web principals
and app principals. To handle this case, XPMChecker
can adopt more sophisticated techniques [31, 14, 13, 39]
which is an orthogonal research direction. In this paper,

XPMChecker is designed to perform an empirical study
rather than to be a detection tool. Our evaluation and
study show that it is effective to draw several insightful
findings.

Although our empirical study is performed on Android
apps, the ideas proposed in this paper also work on
iOS platform. Finally, in our study, manual effects
are involved to classify XPM behaviors. In the future
work, we plan to automatically label the types of XPM
behaviors with heuristic rules and learning techniques.

7 Related Work

The interplay between mobile app, embedded browser,
and embedded web content is complex and fraught with
security concerns. Prior work have discussed these
problems in several aspects.

Web-to-App Security. A large number of these works
focus on how Web code can attack native apps. Several
works point out that malicious JavaScript code from
unauthorized Web origin can get sensitive data from
the host apps through several ways, including abusing
the JavaScript bridge (exported Java functions using
addJavascriptinterface API) [32, 17, 36, 23], accessing
file system [17, 23, 45], abusing HTMLS geolocation
API [23] or postMessage API [24]. To detect such
malicious Web code, BridgeScope [48] is proposed to
precisely and scalably vet JavaScript Bridge vulnerabil-
ities in hybrid apps. Rastogi et al. [40] try to detect
and find the provenance of attacks from ad libraries
to host apps. Jin et al. [26] study the channels for
malicious JavaScript to be loaded by HTMLS5-based
mobile apps. Further more, some defensive mechanisms
are also proposed. NoFRAK [22] enforces access control
rules for the Web code in Cordova framework, with
the help of unforgeable capability tokens from the Web
server. Draco [46] provides a uniform and fine-grained
access control framework to regulate Web code.

App-to-Web Security. An opposite research direc-
tion is to study how host apps can attack Web resources.
Luo et al. [32] show that malicious apps can attack
Web pages by injecting JavaScript code or sniffing and
hijacking Web navigation events. In [33], they also
demonstrate that malicious apps can hijack touch events
of the web pages. Shehab et al. [43] and Chen et
al. [16] focus on the security issues of a certain kind
of Web service, i.e. OAuth in mobile apps. When
using WebView as the user-agent in OAuth, Shehab
et al. [43] show that user credentials and authorization
interface may be attacked, while Chen et al. [16] point
out that access token sent in redirection URI may be
leaked by the host app. However, none of existing
work seeks to find such attacks in real-world apps.
This paper firstly phrases this threat as cross-principal

Web resource manipulation, then overcomes several non-
trivial challenges to design a detection tool, and finally
confirms this kind of attack in not only Android apps but
also i0S apps.

Furthermore, XPMChecker leverages techniques from
several related fields, including static analysis, library
detection, and text similarity. The static analyzer mod-
ule is based on state-of-the-art static analysis tools,
including Soot [28], Flowdroid [11] and IccTA [30].
Specifically, we use the intermediate representations
provided by Soot [28], build an ICFG for each APK
based on Flowdroid [11], and extract inter-component
information provided by IccTA [30]. Our method to
distinguish library code and app code is inspired by some
library detection work [19, 47, 34, 49]. Furthermore,
search engine is utilized by the XPMClassifier module
to recognize XPM behaviors. Besides, search engine is
also widely used in the context of short-text semantic
similarity, such as in [38, 21, 42, 15].

8 Conclusion

This paper conducts the first empirical study on Web re-
source manipulation with large-scale apps. We define the
threats in Web resource manipulation as XPM problems.
To support automatically recognizing XPM behaviors,
we design XPMChecker which overcomes several non-
trivial challenges. With a study of 80,694 top Google
Play apps, we find that 49.2% of manipulation points
are XPM, 4.8% of apps contain XPM behaviors, and
more than 70% XPM behaviors manipulate top popular
Web sites. More importantly, we confirm the threat of
XPM behaviors with obvious malicious intents in both
Android and iOS apps. Our further studies actuate us
to rethink existing defensive mechanisms and propose
new suggestions for future defense design. Besides, to
facilitate further research in XPM behaviors, we release
the dataset at https://xhzhang.github.io/XPMChe
cker/.

Acknowledgements

We would like to thank the anonymous reviewers for
their insightful comments that helped improve the quality
of the paper. This work was supported in part by the Na-
tional Natural Science Foundation of China (U1636204,
61602123, 61602121, U1736208) and the National Pro-
gram on Key Basic Research (NO. 2015CB358800).
Yuan Zhang was supported in part by the Shanghai Sail-
ing Program under Grant 16YF1400800 and a research
gift from Ant Financial. The IU author is supported in
part by the NSF 1408874, 1527141, 1618493 and ARO
WOI11NF1610127.

References

(1]
(2]

[3]

[4]

(3]
(6]

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Apache Cordova. https://cordova.apache.org/.

Building Web Apps in WebView. https://developer.andr
oid.com/guide/webapps/webview.html.

Modernizing OAuth Interactions in Native Apps for Better
Usability and Security. https://developers.googleblog.
com/2016/08/modernizing-oauth-interactions-in-na
tive-apps.html.

OAuth 2.0 for Native Apps. https://tools.ietf.org/htm
1/rfc8252.

Public Suffix List. http://publicsuffix.org/.

Stop Words List from Glasgow Information Retrieval Group.
http://ir.dcs.gla.ac.uk/resources/linguistic_ut
ils/stop_words.

The Chromium Projects. http://www.chromium.org/.

UIWebView, Apple Development Documentations. https://de
veloper.apple.com/documentation/uikit/uiwebview.

WebView, Android Developers. https://developer.androi
d.com/reference/android/webkit/WebView.html.

WKWebView, Apple Development Documentations.
https://developer.apple.com/documentation/we
bkit/wkwebview.

ARZT, S., RASTHOFER, S., FrITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices 49, 6 (2014), 259-269.

Au, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. Pscout:
analyzing the android permission specification. In Proceedings
of the 2012 ACM conference on Computer and communications
security (2012), ACM, pp. 217-228.

BICHSEL, B., RAYCHEV, V., TSANKOV, P., AND VECHEV,
M. Statistical deobfuscation of android applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2016), CCS
’16, ACM, pp. 343-355.

BODDEN, E., SEWE, A., SINSCHEK, J., OUESLATI, H., AND
MEZINI, M. Taming reflection: Aiding static analysis in the
presence of reflection and custom class loaders. In 2011 33rd
International Conference on Software Engineering (ICSE) (May
2011), pp. 241-250.

BOLLEGALA, D., MATSUO, Y., AND ISHIZUKA, M. Measuring
semantic similarity between words using web search engines.
www 7 (2007), 757-766.

CHEN, E. Y., PEL, Y., CHEN, S., TIAN, Y., KOTCHER, R., AND
TAGUE, P. Oauth demystified for mobile application developers.
In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (2014), ACM, pp. 892—
903.

CHIN, E., AND WAGNER, D. Bifocals: Analyzing webview
vulnerabilities in android applications. In International Workshop
on Information Security Applications (2013), Springer, pp. 138—
159.

CHRISTENSEN, A. S., M@LLER, A., AND SCHWARTZBACH,
M. 1. Precise analysis of string expressions. In International
Static Analysis Symposium (2003), Springer, pp. 1-18.

CRUSSELL, J., GIBLER, C., AND CHEN, H. Scalable semantics-
based detection of similar android applications. In Proc. of
ESORICS (2013), vol. 13, Citeseer.

https://xhzhang.github.io/XPMChecker/
https://xhzhang.github.io/XPMChecker/
https://cordova.apache.org/
https://developer.android.com/guide/webapps/webview.html
https://developer.android.com/guide/webapps/webview.html
https://developers.googleblog.com/2016/08/modernizing-oauth-interactions-in-native-apps.html
https://developers.googleblog.com/2016/08/modernizing-oauth-interactions-in-native-apps.html
https://developers.googleblog.com/2016/08/modernizing-oauth-interactions-in-native-apps.html
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc8252
http://publicsuffix.org/
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://www.chromium.org/
https://developer.apple.com/documentation/uikit/uiwebview
https://developer.apple.com/documentation/uikit/uiwebview
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

DAVIDSON, D., CHEN, Y., GEORGE, F., LU, L., AND JHA, S.
Secure integration of web content and applications on commodity
mobile operating systems. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security
(2017), ACM, pp. 652-665.

FITZPATRICK, L., AND DENT, M. Automatic feedback using
past queries: social searching? In ACM SIGIR Forum (1997),
vol. 31, ACM, pp. 306-313.

GEORGIEV, M., JANA, S., AND SHMATIKOV, V. Breaking
and fixing origin-based access control in hybrid web/mobile
application frameworks. In NDSS symposium (2014), vol. 2014,
NIH Public Access, p. 1.

HASSANSHAHI, B., JIA, Y., YAP, R. H., SAXENA, P., AND
LIANG, Z. Web-to-application injection attacks on android:
Characterization and detection. In European Symposium on
Research in Computer Security (2015), Springer, pp. 577-598.

HUANG, J., GU, G., MENDOZA, A., ET AL. Study and mit-
igation of origin stripping vulnerabilities in hybrid-postmessage
enabled mobile applications. In Study and Mitigation of Origin
Stripping Vulnerabilities in Hybrid-postMessage Enabled Mobile
Applications, IEEE, p. 0.

JAGPAL, N., DINGLE, E., GRAVEL, J.-P., MAVROMMATIS,
P., PROVOS, N., RAJAB, M. A., AND THOMAS, K. Trends
and lessons from three years fighting malicious extensions.
In 24th USENIX Security Symposium (USENIX Security 15)
(Washington, D.C., 2015), USENIX Association, pp. 579-593.

JiN, X., Hu, X., YING, K., DU, W., YIN, H., AND PERI,
G. N. Code injection attacks on html5-based mobile apps:
Characterization, detection and mitigation. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 66-77.

KAPRAVELOS, A., GRIER, C., CHACHRA, N., KRUEGEL,
C., VIGNA, G., AND PAXSON, V. Hulk: Eliciting malicious
behavior in browser extensions. In 23rd USENIX Security
Symposium (USENIX Security 14) (San Diego, CA, 2014),
USENIX Association, pp. 641-654.

LAawM, P., BODDEN, E., LHOTAK, O., AND HENDREN, L.
The soot framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop (CETUS
2011) (2011), vol. 15, p. 35.

L1, D., Lyu, Y., WAN, M., AND HALFOND, W. G. String
analysis for java and android applications. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering
(2015), ACM, pp. 661-672.

L1, L., BARTEL, A., BISSYANDE, T. F., KLEIN, J., LE TRAON,
Y., ARZT, S., RASTHOFER, S., BODDEN, E., OCTEAU, D.,
AND MCDANIEL, P. Iccta: Detecting inter-component privacy
leaks in android apps. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1 (2015), IEEE
Press, pp. 280-291.

L1, L., BISSYANDE, T. F., OCTEAU, D., AND KLEIN, J.
Droidra: Taming reflection to support whole-program analysis
of android apps. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (New York, NY,
USA, 2016), ISSTA 2016, ACM, pp. 318-329.

Luo, T., Hao, H., Du, W., WANG, Y., AND YIN, H. Attacks
on webview in the android system. In Proceedings of the
27th Annual Computer Security Applications Conference (2011),
ACM, pp. 343-352.

Luo, T., JIN, X., ANANTHANARAYANAN, A., AND DU, W.
Touchjacking attacks on web in android, ios, and windows phone.
In International Symposium on Foundations and Practice of
Security (2012), Springer, pp. 227-243.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A

MA, Z., WANG, H., Guo, Y., AND CHEN, X. Libradar: fast
and accurate detection of third-party libraries in android apps.
In Proceedings of the 38th International Conference on Software
Engineering Companion (2016), ACM, pp. 653-656.

MERKLE, R. C. A digital signature based on a conventional
encryption function. In Advances in Cryptology — CRYPTO ’87
(1987), Springer, pp. 369-378.

MUTCHLER, P., DOUPE, A., MITCHELL, J., KRUEGEL, C.,
AND VIGNA, G. A large-scale study of mobile web app security.
Mobile Security Techologies (2015).

PEARCE, P., FELT, A. P.,, NUNEZ, G., AND WAGNER, D.
Addroid: Privilege separation for applications and advertisers in
android. In Proc. of AsiaCCS ’12.

RAGHAVAN, V. V., AND SEVER, H. On the reuse of past optimal
queries. In Proceedings of the 18th annual international ACM
SIGIR conference on Research and development in information
retrieval (1995), ACM, pp. 344-350.

RASTHOFER, S., ARZT, S., MILTENBERGER, M., AND
BODDEN, E. Harvesting runtime values in android applications
that feature anti-analysis techniques. In Network and Distributed
System Security Symposium (NDSS) (Feb. 2016).

RASTOGI, V., SHAO, R., CHEN, Y., PAN, X., ZOoU, S., AND
RILEY, R. Are these ads safe: Detecting hidden attacks through
the mobile app-web interfaces. In NDSS (2016).

ROESNER, F., AND KOHNO, T. Securing embedded user
interfaces: Android and beyond. In USENIX Security Symposium
(2013), pp. 97-112.

SAHAMI, M., AND HEILMAN, T. D. A web-based kernel
function for measuring the similarity of short text snippets. In
Proceedings of the 15th international conference on World Wide
Web (2006), AcM, pp. 377-386.

SHEHAB, M., AND MOHSEN, F. Towards enhancing the security
of oauth implementations in smart phones. In Mobile Services
(MS), 2014 IEEE International Conference on (2014), 1EEE,
pp. 39-46.

SHEKHAR, S., DIETZ, M., AND WALLACH, D. S. Adsplit:
Separating smartphone advertising from applications. In Proc.
of USENIX Security’12.

SON, S., KiM, D., AND SHMATIKOV, V. What mobile ads know
about mobile users. In NDSS (2016).

TUNCAY, G. S., DEMETRIOU, S., AND GUNTER, C. A. Draco:
A system for uniform and fine-grained access control for web
code on android. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016),
ACM, pp. 104-115.

WANG, H., Guo, Y., MA, Z., AND CHEN, X. Wukong: A
scalable and accurate two-phase approach to android app clone
detection. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis (2015), ACM, pp. 71-82.

YANG, G., MENDOZA, A., ZHANG, J., AND GU, G. Precisely
and scalably vetting javascript bridge in android hybrid apps. In
International Symposium on Research in Attacks, Intrusions, and
Defenses (2017), Springer, pp. 143-166.

ZHANG, Y., DAL, J., ZHANG, X., HUANG, S., YANG, Z.,
YANG, M., AND CHEN, H. Detecting third-party libraries in
android applications with high precision and recall. In 2018 IEEE
25th International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2018), IEEE, pp. 141-152.

Real-world Malicious Cases

Table 9 lists the detailed information of the 21 malicious
apps detected by XPMChecker.

Table 9: Discovered malicious XPM behaviors with different aims: impersonating relying party in OAuth (Al, 2
apps), stealing user credentials (A2, 6 apps), stealing cookies (A3, 14 apps). One app named InstaView exhibits both
Al and A2 behaviors.

Package Name Installations Ma11c1(?us Description APK MD5
Behavior

com.chatous.chatous 10M-50M A3 steal.Facebook cookies and abuse d8726437e1{2bbe17257c4eac6707bee
cookies to send spam messages

com.chatous.plaza IM - 5SM A3 steal.Facebook cookies and abuse e5Scdec654e6f97a95ecSeed7afdd961d
cookies to send spam messages

com.melonapps.melon SM - 10M A3 steal Facebook cookies and abuse | 3¢5} 3949.0,84421979354ddd058b60
cookies to send spam messages

com.chatous.pointblank 10M - 50M A3 steal Facebook cookies and abuse | -) 35,9,137363¢480abb1cf013d29cdf
cookies to send spam messages

com.vendiste.app 100K - 500K A3 steal Facebook cookies and abuse | s,) 109)55q42f6¢2376{088184¢925
cookies to send spam messages

steal Facebook cookies and abuse

com.litefbwrapper.android 100K - 500K A3 cookies to receive account’s notifi- | 71e290121dddd0099d766685b£89a479
cation
Al Impersonating Tinder in Instagram
com.instaview.app 1M - 5M & A2 OAuth & inject JavaScript to steal | b354aaftb7{86e7ebc629a767d29f886a

user’s Instagram credentials
inject JavaScript to steal user’s QQ

com.kingsoft.email 100K - 500K A2 Email credentials ¢3501cbb6f0caa3c2655de2713afad3a
cokr.adkingkong 500K - IM Az | imect JavaScript (o steal WSCr's | qpg3008:334240112215¢10d97¢8b
google plus credentials
com.dmf.wall. 100K - 500K | A3 | steal flickr cookies to login auto- |- o551 70060457c9eb229234f4abaa2
DMFPanoLwpF matically
rulike.vs 100K - 500K | A3 f;?;‘lrr;:tigﬁ"k‘es 10 Tequest USET'S | 33050h3042acc6ffac59bbTe4 187185
sg‘com.smgnet. 100K - 500K A3 use Facebook cookie to reconnect 2561 1deTd5T3e43c923f8eS 1 F1835302
.mystorage.android when user logouts
com.hipth.molome 10K - 50K A2 ;‘g:;ts g;:::cnpt to steal Google | 3. 6.7e3¢51387a53cdb06a3e48c917
com.weirdlysocial.videoview | 10K - 50K A2 i‘f;;fgr :I‘;‘lvirsecgg’:ﬁ;l‘; steal user’s | g0 e fbd8Sc8f239b122¢a31eb0b318a
com.wierdlysocial.storyview 5K - 10K A2 irr?sizgr:;vzrsecc;;itﬁatlz steal user’s f4£1f6f644bbcadde637c0b19b94ec1f
use teamgum’s clientld in Google
com.deltecs.wipro 50K - 100K A3 SSO and steal access token from | 45dfd761e11883c0b225f7dc8edb4bl4
cookies
use teamgum’s clientld in Google
com.snapdealhub 500K - 1M A3 SSO and steal access token from | 31139b30a4f92f14a8f9707f74c9b60d
cookies
Gol den%);:klzlx%j:{ 40016 | 100K-500K | Al gizibofznsgéh”anke clientld for | 74 3007638 f64de697dfb473a2a6d0d

steal Google cookies and save them
into sharedpreference

com.danielstudio.app.wowtu | 10K - 50K A3 steal Weibo cookies and abuse | 3 4941c f646475dfT4e2b20a7b325
cookie to update photos

com.aol.mobile.aim IM - 5M A3 steal Facebook cookies and save | g0+ 40761 d5he08e7e1077e31b409e2
them into sharedpreference

com.homedev.locationhistory | 100K - 500K A3 78ca091t3d1367982c5tb084b8t31734

	Introduction
	Web Resource Manipulation
	Motivating Example
	Problem Definition
	Web Resource Manipulation APIs

	XPMChecker
	Challenges and Ideas
	Design Overview
	Static Analyzer
	Extract Manipulated Web Resource URL
	Extract Manipulating Context

	Principal Identifier
	XPMClassfier

	Empirical Study
	Evaluation of XPMChecker
	Prevalence of XPM Behaviors
	Breakdown of XPM Behaviors
	Necessary XPM Behaviors
	Unsafe XPM Behaviors
	Malicious XPM Behaviors

	Implications on Mitigation
	Risk Awareness to Service Providers
	Evaluating Defensive Techniques

	Discussion
	Related Work
	Conclusion
	Real-world Malicious Cases

