
Notice the Imposter! A Study on User Tag Spoofing Attack in Mobile Apps

Shuai Li, Zhemin Yang, Guangliang Yang, Hange Zhang, Nan Hua, Yurui Huang, Min Yang
Fudan University, China

{lis19@, yangzhemin@, yanggl@, 20210240152@, huan19@, 21210240204@, m_yang@}fudan.edu.cn

Abstract
Recent years have witnessed the rapid development of mo-

bile services, spanning almost every field. To characterize
users and provide personalized and targeted services, user tag
sharing, which labels users and shares their data, is becom-
ing increasingly popular. Its security attracts more and more
attention, and a series of privacy issues have been reported
in several specific services. However, up to now, there still
lacked a thorough and comprehensive understanding of the
characteristics and security of user tag sharing.

In this work, we conduct a systematic study of user tag shar-
ing and its security. We first model user tag sharing with three
phases, and discover that the privacy security issue commonly
exists in practice. We generalize and formalize the privacy
issue as user tag spoofing. Then, we propose a novel network-
level smart fuzzing approach, called UTSFuzzer, against user
tag spoofing. The key idea behind UTSFuzzer is to explore a
large number of valid user tag values as input to imitate user
tag spoofing against real-world mobile services. By applying
UTSFuzzer on a large scale of real-world popular apps, we
verify the effectiveness of UTSFuzzer and unveil that 100
mobile apps (including 115 mobile services) are vulnerable
to user tag spoofing. The accumulated installations of all af-
fected apps (users) reach more than 413 million. Additionally,
UTSFuzzer shows user tag spoofing can cause serious attack
efforts, including economic loss and user activity monitoring.

1 Introduction

Nowadays, modern services bring significant benefits to peo-
ple’s daily life and work by providing plentiful and diverse
functionalities. To improve user experiences with targeted and
personalized services, user tags [58] have been commonly
utilized and applied in modern mobile apps. User tags are
collected and constructed by service providers to describe
various attributes or metadata of user profiles. Thus, they can
characterize users and help mobile services understand vari-
ous user behaviors.

Upon user tags, user tag sharing, or tag sharing, is be-
coming increasingly popular. This means, a user’s tag data
may be shared with other users. Consider two common real-
world cases of user tag sharing. The first example is a ride-
hailing and sharing app. When a user (rider) makes a ride, a
set of nearby users (drivers) are presented with sharing their
user tags, such as driver name, photo, rating, vehicle model,
real-time GPS location, and even phone number (for further
communication). Another example is a family-locator app
(10,000,000+ downloads), which is commonly used for the
elderly and children. When two users are located in the same
family group, their user tags are shared with each other, in-
cluding location information and safety status (e.g., car crash
alert). User tag sharing has been supported by many popular
apps. With the rapid development of machine learning, user
tag sharing is commonly used in several typical cluster-based
services [18, 23, 39, 58], such as interested content and friend
recommendation.

As user tag sharing may involve user private data, its se-
curity raises concerns. It has been recently reported that sev-
eral user tag sharing services may suffer privacy leakage is-
sues [26,44,64]. For instance, Hagen et al. [26] demonstrated
that a contact discovery service could be deceived by remote
attackers to steal private user data. Nevertheless, prior work
mainly focused on concrete cases. There is still a lack of a
thorough understanding of the characteristics and security of
user tag sharing. Several important research questions remain
to be answered: How and what user tags are usually shared in
practice? What is the root cause of the privacy issue? What are
the attack surface and exploit vectors? How many real-world
apps are vulnerable? What attack efforts may be introduced?

Motivated by these, we conduct the first comprehensive
and systematic study on the characteristics and security of
user tag sharing in modern mobile services. We first study
the architecture and implementation of real-world tag sharing
services and model the tag sharing process with three phases,
including tag constructing, clustering, and sharing. Then, we
analyze the security of tag sharing and find the privacy issue
commonly exists in various tag sharing services. Based on

this, we generalize and formalize this privacy issue as the user
tag spoofing vulnerability, along with its root cause analysis
and also the conclusion of three attack vectors. Our study
demonstrates an attacker can easily exploit a user tag spoof-
ing vulnerability by forging a fake tag and fooling the target
tag sharing service. As a result, the victim service is deceived
and wrongly shares the tags of the matched users. Specifi-
cally, when there is a user, one of whose tags is equal to the
counterfeit tag, all tags of the victim user may be shared out
by the victim service.

After understanding user tag spoofing attack, we further
aim to learn its security impacts on real-world popular apps.
For this purpose, a vulnerability detection tool against user
tag spoofing is demanded. However, this is not an easy task,
and it is hard to directly apply or extend existing techniques
to achieve the goal. For static analysis based techniques, they
face difficulties to understand user tag semantics in a con-
crete tag sharing implementation, as much tag information
is dynamically set up, which requires interactions with the
service side. For dynamic analysis based techniques, they can
monitor and analyze the tag data shared with the service. Nev-
ertheless, it is challenging for them to generate a valid forged
tag capable to trigger the tag spoofing attack.

In this paper, we propose a novel fuzzing based security-
vetting approach, called UTSFuzzer, that can infer the tag
semantics of the target tag sharing service, and guide tag-
mutation based fuzzing. Our UTSFuzzer approach is three-
fold. UTSFuzzer first pre-processes given mobile apps with
program analysis to filter the ones that do not enable user
tag sharing. Based on our understanding of the sensitivity
of tag semantics, the target tag employed for managing tag
sharing is further located. Second, UTSFuzzer generates fake
but valid test cases with an effective tag space exploration
and tag mutation scheme. Third, by feeding these fake tags,
UTSFuzzer vets the security of the target service by following
the essence of user tag spoofing.

By applying UTSFuzzer on a large number of popular An-
droid apps (from Google Play), we evaluate UTSFuzzer’s ef-
fectiveness and assess the security impacts of user tag spoof-
ing. As a result, we find UTSFuzzer is effective with high
precision (89.04% for filtering irrelevant apps and 95.00% for
determining vulnerable mobile services), and 100 vulnerable
apps along with 115 vulnerable user tag sharing services are
identified. Note that there may be several concrete mobile ser-
vices within one app. For instance, a shopping app may have
a product recommendation service, payment service, and cus-
tomer service. Furthermore, a large scale of users are affected
which can be reflected by the accumulated installs of all af-
fected apps (more than 413 million). Meanwhile, the severe
consequences brought by user tag spoofing are demonstrated,
including leakage of business secrets, the break of randomized
preservation mechanisms, economic loss, and even monitor-
ing of user activities. To mitigate the risks brought forward
by user tag spoofing, we have responsibly informed the af-

fected service providers. Many of them have confirmed our
reports and timely fixed the reported vulnerabilities till the
submission of this paper.

In sum, our contributions are outlined as follows:
• The security of user tag sharing mobile service and the

generalized user tag spoofing attack against it are system-
atically analyzed, which complement the deficiency of the
community’s understanding in this regard.

• A novel fuzzing based security-vetting approach -
UTSFuzzer is designed and implemented, which is scal-
able and precise to verify whether a mobile service is
vulnerable to user tag spoofing or not.

• With UTSFuzzer, the landscape and severity of user tag
spoofing attack in real world apps are unveiled. We re-
sponsibly informed the affected app developers and help
them to timely fix the identified vulnerabilities.

2 Problem Statement

2.1 User Tag Sharing
To understand the characteristics of user tag sharing, we com-
prehensively study the design and implementation of a set
of real-world user tag sharing services. As a result, we con-
clude the user tag sharing process with three key phases:
tag constructing, tag matching, and tag sharing. Below we
present more details about each phase and the related concepts
(bound-tag and free-tag).

Tag constructing. For each user, a mobile app can col-
lect various user information as user tags, and construct user
fingerprints or portraits. User tags [58] are usually collected
from plentiful perspectives, including user device data (e.g.,
phone number, location, device ID), registration and account
information (e.g., identity and living address), and user app
activities (e.g., interested content and joined groups). Thus, a
user tag actually points to one of attributes or metadata of a
user’s profile. Normally, a use tag is a pair of key-value, e.g.,
<phone number, xxx-xxx-xxxx>. It is worth noting that user
tag data can be dynamic and updated in real-time, as some
user tags can be changed over time, e.g., GPS location and
dwell time on different app content.

Tag clustering. With the constructed user tags, mobile ser-
vices can better understand users’ characteristics and perform
user clustering. When several users have the same (or similar)
user tag (denoted as bound tag), they are usually linked and
managed together. For example, as introduced in §1, users
in a family locator app will be clustered according to their
family group ID tag.

Tag sharing. When some users are clustered with the same
or similar bound tag, extra privileges may be assigned to them
and allow them to (share) see each other’s user tags. During
the process of this tag sharing, it should be noted that many
user tags apart from the bound tag (denoted as free tags) are
shared. Taking the family locator app as an illustration, free

App App Server

V
u
ln
e
r
a
b
le

U
se

r
T

ag
 S

h
a
ri

n
g

Channels of

User Tag Sharing

Attack Flow

…

…

Harvested Tags

Attacker

Bound Tag

Free tags
Normal

User

Tags

Craft

Bound Tag

Figure 1: Attack flow of user tag spoofing.

tags such as live location and safety status are shared with
users having the same bound tag (i.e., family group).

As discussed above, there are usually two key types of
user tag, i.e., ‘bound tag’ and ‘free tag’, which play important
roles in the three phases of user tag sharing. On the one hand,
bound tags are selected from the constructed user tags, and
act as the basis for clustering users. According to the specific
functionalities a user tag sharing service provides, the service
provider decides what user tags should be taken as bound tags.
On the other hand, free tags point to all user tags but apart
from the bound tags. Hence, user tag sharing is a process
when two users’ bound tags are grouped together, their free
tags may be shared with each other by the mobile service.

To ease the understanding of user tag sharing and related
concepts, a real example is Tinder, a high-profile dating app in
Google Play store. First, Tinder collects various user data (e.g.,
geographical location, selfies, lifestyle, interests, and job infor-
mation) for constructing user tags (Phase#1 Tag constructing).
Then, its user tag sharing service - ‘users discovery’ relies on
the geographical location (i.e., bound tag) to cluster users that
are close to each other (Phase#2 Tag clustering). The bound
tag here (i.e., geographical location) is picked according to its
service logic, i.e., discovering nearby users. Finally, Tinder
shares out each user’s free tags with other users, e.g., selfies,
interests, and lifestyle (Phase#3 Tag sharing).

2.2 User Tag Spoofing Attack
User tag sharing enhances and enriches mobile services. How-
ever, it raises security concerns. To understand the security of
user tag sharing, we employ reverse engineering and conduct
a manual analysis on a set of popular mobile apps supporting
user tag sharing services in the real world. Our study discov-
ers user tag sharing can be extensively abused by attackers for
stealing user data and we generalize the security issue as user
tag spoofing attack. The user tag spoofing vulnerability exists
in different classes of modern mobile services. Its process is
illustrated in Figure 1.

Particularly, an attacker can be a malicious user, who is fa-

miliar with how the target (victim) app works, and understands
how and what user tags are used in the victim app. The at-
tacker mainly targets user tag sharing services that cluster and
manage users with a similar or same bound tag. For security
reasons, the service providers enable data-masking and desen-
sitization on the shared free tags, for example, by removing
sensitive free tags or masking some tag values (e.g., replacing
"alice@gmail.com" with "a****@g****.com"). However,
many free tags are app-specific and may be shared with no
protections (i.e., in plain text), such as a user’s interested con-
tent and joined groups. The service providers need to make a
good balance between user tag sharing and privacy protection.
Nevertheless, this is a quite challenging task. Our study shows
such a balance is rarely achieved in practice.

Upon the user tag sharing services, the goal of the attacker
is to abuse the user tag sharing channels available in the victim
app. To this end, the attacker creates a number of fake bound
tags by subtly forging the values of their user data. Using
these fake bound tags, the attacker can deceive the target
service to share free tags belonging to other users. Our study
further concludes three main attack vectors and discovers their
security consequences. More details are presented below.

Attack Vector #1. This attack vector is straightforward. By
tampering with the bound tag value, an attacker may be treated
as another user and directly spoof the target user tag sharing
services to steal the target user’s private data. For example,
when an attacker Mallory forges his own identity tag to be the
one of Alice, he may successfully trick the vulnerable user
tag sharing service into taking him as Alice, and thus illegally
accesses the free tags that should only be shared with Alice.

Attack Vector #2. For tag clustering and matching, our study
discovers that app developers usually manage and control the
shared free tags in a multi-level permission system, e.g., group
permission. For example, when Alice and Bob are grouped,
they have the group permission to check partial and even all
tags of all members in the group. When not grouped, tag shar-
ing is not allowed. Therefore, in this attack vector, an attacker
Mallory abuses the target service to be grouped with Alice

and Bob, and obtains the group permission to access group
members’ free tags. More than that, different from conven-
tional data security issues [10, 11, 33, 48, 59], which mainly
focused on system-level data (e.g., device ID and phone num-
ber), the tag spoofing covers much app-level specific data. The
sensitivity of this class of data is hardly determined. Hence, it
is challenging for service providers to balance data sharing
and protection.

Attack Vector #3. Many user tags seem insensitive and unim-
portant. These tags may not be well protected and shared out.
However, by exploiting user tag spoofing vulnerabilities, an
attacker may completely explore the target victim service,
and obtain a large number of free tags. Benefiting from the
shift from quantitative to qualitative changes, the attacker
may obtain statistical data he is interested in. For instance,
consider the leaked tag is the last active date (specific to apps
that record when users are active), if the attacker can access
all users’ active date tags, the attacker may infer the number
of daily/weekly/monthly active users of the target service,
which are key business secrets for seeking funding and may
be abused by competitors to build targeted market strategies.

Root Cause Analysis. As discussed above, one important
reason is the improper protection of the shared app-specific
user tags. App developers may ignore or not be able to figure
out the potential privacy risks caused by user tag sharing. Fur-
thermore, as the third attack vector discovers, some user tags
seem to be unimportant but may have statistical characteris-
tics, which greatly complicates the daunting problem of the
proper protection of user tag sharing.

Moreover, different from traditional authentication issues
that mainly focus on user identity, user tag spoofing targets
authentication issues upon user tags. According to its attack
vectors, the root cause of user tag spoofing attack lies in the
missing or ineffective check of the authenticity of the pro-
vided bound tags. During the process of user tag sharing,
the values of bound tags are collected from the client side,
which can be controlled by the attacker and thus may be fake.
Therefore, when receiving a request, the authenticity of bound
tags should always be validated. However, as demonstrated in
several vulnerable user tag sharing services [26, 44, 64], this
is not an easy task since service providers need to balance
between the user experience (or even service utility) and data
security. Thus, the user tag spoofing issues commonly exist
in modern user tag sharing services.

2.3 Real-World Example
The mobile app G1 is a high-profile family locator app that
has 10,000,000+ installs in Google Play store. Through app G,
users can invite their family members and share their location
information in a private circle only their family members can

1Note that we may be requested to anonymize the concrete (package)
names of identified apps to avoid unnecessary influences.

see. To join a private circle, a user needs to submit a valid
circle code, which can be obtained by an online invitation
provided by the circle owner. Typically, G would form specific
user tags for a user, including username, battery status, last
activity time, and most important - what circles he has. When
the owner of a private circle decides to invite other family
members to join, the relevant mobile service directly employs
his circle-id to share back corresponding circle-code for
joining his circle. Thereafter, the circle-code is provided
to his family members to let them join.

G applies group-level permission to conduct access control
and privacy protection. However, G is vulnerable to user tag
spoofing. An attacker can exploit this vulnerable service by
① first transforming himself to be the owner of the victim
circle by substituting the value of his circle-id tag (bound-
tag) to be the id of the victim circle, ② then requesting the
circle-code tag (free-tag) of the victim circle, and ③ fi-
nally joining in the victim circle with the illegally obtained
circle-code. As a result of such user tag spoofing, the at-
tacker can easily access the circle-code tag of a victim user
and further leak other sensitive free tags about members of
the victim circle, including their email addresses, device mod-
els, phone numbers, live locations and so on. With the leaked
live location, the attacker can track the moving trajectory of
victims, which can bring serious safety threats. Besides, by
forging as many as possible circle-id tags, the scale of
affected victims can be enormous.

2.4 Attack Formalization
The mobile service with user tag sharing is denoted as a class
of functionality F(), which takes the bound tag of a user
Abound_tag as inputs and outputs free tags of other users Utags
according to Abound_tag. Thus we get:

Utags = F(Abound_tag) (1)

Then, when the adversary conducts user tag spoofing attack,
he would forge fake bound tag values - Abound_tag′ , which is
used in F to cluster users and control user tag sharing. Partic-
ularly, regarding an adopted type of bound tag, the adversary
can refer to any available resource to construct a set S of
probe values (i.e., counterfeit values), where the adversary
picks one Abound_tag′ from it each time to conduct user tag
spoofing attack. Thus, the attacker can get:

U ′
tags = F(Abound_tag′), Abound_tag′ ∈ S (2)

With U ′
tags, the user tag spoofing attack succeeds when the

following condition satisfies:

∃Abound_tag′ ∈ S,U ′
tags ̸= NULL & U ′

tags ̸=Utags (3)

2.5 Threat Model
Specifically, this paper considers the following as the threat
model of user tag spoofing attack.

• Attack target. User tag spoofing takes the user tag shar-
ing service providers as the attack target. Instead of attack-
ing victims’ devices or apps, the adversary seeks vulner-
able user tag sharing services in the wild by conducting
user tag spoofing on his own device.

• Adversary. Regarding user tag spoofing attack, we con-
sider an adversary as a malicious requester who pretends
to act as a normal user and is curious about the user tags of
other users. By continuously forging the values of target
bound tags and submitting them, the adversary harvests
victims’ data that he is not supposed to access.

• Adversary goal. Generally, the adversary is only allowed
to access various free tags of users that share a similar
or same bound tag with him. The attack objective is to
deceive user tag sharing services and obtain as much as
possible the detailed information of other users.

• Adversarial capabilities. We assume that the adversary
is skilled in analyzing the target app and has complete
control of his own mobile device. Namely, in practice,
an attacker can first sign into the target app using his
own account and pretend as a benign user. Then, he can
monitor the app’s mobile traffic with a rooted mobile
device along with network proxy tools (e.g., MitmProxy
[3]) and identify a bound tag. Next, he can mutate the
bound tag with a fake value and craft a malicious HTTP
request to send. Finally, the attacker can check whether
the free tags of other users are shared out. The adversary
is also assumed to be skilled in crawling user tags in scale,
e.g., the ability to use script programming to conduct user
tag spoofing attack in batch.

3 UTSFuzzer

3.1 Overview
After understanding the user tag spoofing security issues, we
aim to comprehensively study the security impacts of user
tag spoofing on real-world popular apps. To this end, we in-
tend to build an automatic and precise vulnerability detection
approach. The following goals should be achieved.

First, we need to identify the test target, i.e., candidate tag
sharing services, from numerous mobile services in the wild.
However, this is not an easy task. On the one hand, many user
tag sharing services are highly bound with app functionali-
ties and have diverse implementations. Manually exploring a
large number of mobile services in wild required heavy man-
ual effort. For automatic testing, the user tag semantics of a
mobile service needs to be thoroughly understood.

Second, in line with user tag spoofing, the following critical
point is creating fake but valid bound tags, which is necessary
for spoofing the target services. Nevertheless, it is hard to
properly deal with the exploration of the tag value space
(introducing invalid values), and extensively handle different
cases. First, for a bound tag, it can have different value formats

in different mobile services, e.g., ‘female’ and ‘1’ for gender.
Second, it is hard to guarantee the forged bound tags (e.g.,
group id) fall in a valid value interval.

Third, we need to precisely determine whether a candidate
mobile service is vulnerable or not. Particularly, by imitating
user tag spoofing, the constructed fake bound tags are fed
into the candidate mobile service, and the relevant service
responses are obtained. In this condition, an effective solution
for confirming whether the vulnerability exists is needed.

Motivated by the above goals, we propose a novel fuzzing
based security-vetting system, called UTSFuzzer, that can in-
fer the user tag semantics of the target services and guide tag
mutation based fuzzing. Fuzzing is one of the most practi-
cal and popular security analysis techniques, and suitable to
achieve our goals. The insight behind our UTSFuzzer fuzzing
approach is that the processes of tag clustering and sharing are
characterized by network packet content (i.e., corresponding
HTTP/HTTPS requests and responses). Thus, to easily cap-
ture the used bound tags and shared free tags within user tag
sharing services, UTSFuzzer is designed upon the network
traffic of mobile services.

As shown in Figure 2, UTSFuzzer is a three-fold approach.
First, UTSFuzzer preprocesses mobile apps with program
analysis and filters apps that do not enable user tag sharing.
For the remaining mobile apps, UTSFuzzer further locates the
candidate user tag sharing services with an effective heuristic.
Second, UTSFuzzer designs and applies a proper tag mutation
strategy, which effectively explores the tag value space and
generates fake but valid bound tags. Last, according to the
formalization of user tag spoofing (Equation 3), a vulnerability
determination module is designed to judge whether the tested
candidate service is vulnerable or not. More details about the
approach of UTSFuzzer are discussed below.

3.2 Preprocessing

3.2.1 Candidate Mobile App Detection

In this step, UTSFuzzer utilizes a key insight to filter out
mobile apps that do not enable tag sharing services. It is no-
ticed that user tag sharing services have specific code patterns.
Based on the analysis of user tag sharing, the code pattern
typically has two aspects. On the one hand, to ease the stor-
age and usage of free tags that are shared by user tag sharing
services, mobile apps typically manage them in one or several
objects (e.g., an object of a Java class named UserProfile).
On the other hand, to manage user sharing, a couple of bound
tags are often sent out through the network APIs. With such a
code pattern or practice of user tag sharing services, mobile
apps that do not follow it can be discarded.

Following this code pattern, UTSFuzzer utilizes the bi-
directional taint analysis to identify user tag sharing. In Par-
ticular, bi-directional taint analysis employs the forward taint
analysis to track whether there exist user tags related objects

Preprocessing
Bound Tag

Identification

Tag Space

Exploration

Bound

 Tag Space

Candidate

Services with

Bound Tags

Candidate

Apps

Tag Generation

Exposed

Free Tags

Tag Mutation

Vulnerability

Determination

Vulnerability

Report
Fuzz Engine

Fake

Bound Tags

Candidate Service Identification

Figure 2: Overview of UTSFuzzer.

that are populated by network traffic. If none of any such ob-
ject is found (i.e., no user tags are shared back), the analyzed
app will be dropped. Meanwhile, through the backward taint
analysis, the bi-directional taint analysis checks if any data
is passed to the network request interfaces, whose responses
are found to populate user tags related objects. If no data is
identified to be sent out (then no bound tag is collected to the
app server), the tested app is considered irrelevant with user
tag sharing services and thus is dropped.

In the implementation, the bi-directional taint analysis
mainly focuses on the semantics related to the widely-used
network interfaces [6]. The bi-directional taint analysis takes
the top six (as ranked by AppBrain [6]) network interfaces as
taint sources, carefully supports their different usages accord-
ing to their official documentations, and performs a classic
data flow analysis to check whether an analyzed mobile app
has the code pattern of user tag sharing. During the backward
taint analysis, only data passed to form the URL paths or
bodies of network requests is considered. Thus, parameters
that are commonly seen and used to build headers of network
requests are ignored (e.g., "Content-Type"). In the actual test-
ing, UTSFuzzer would first exclude irrelevant apps that do not
require android.permission.INTERNET permission (thus
not being able to provide user tag sharing) and further filter
out apps that are discarded by the bi-directional taint analysis.

3.2.2 Bound Tag Identification

Given a candidate mobile app, the next step of UTSFuzzer is
to check if there are bound tags used in user tag sharing ser-
vices, which are the potential fuzzing targets. As introduced
in §2.1, bound tags play an important role in user tag sharing
services. In user tag sharing services, the HTTP/HTTPS re-
quests that contain bound tags are also our main fuzzing entry
points. To this end, we start the dynamic testing on network
traffic, which also have significant characteristics.

In this step, UTSFuzzer applies network packet analysis
and identifies what is the employed bound tag for controlling
the shared free tags in them. To do so, UTSFuzzer needs to
understand the various semantics of bound tags and accord-
ingly identify them. Our main idea is to take advantage of
checking the sensitivity of bound tags. Many user tags are app
specific. But differently, we find bound tags often have sensi-

tive semantics, i.e., containing sensitive user data (usually a
sensitive key). In other words, to make the provided services
personalized or targeted, the services need to rely on bound
tags that can precisely describe the characteristics of users,
which are typically sensitive regarding semantics. Therefore,
the sensitive semantic is a reliable sign of bound tags’ exis-
tence. If one or several bound tags of a mobile service are
identified, this mobile service along with the located bound
tags is passed to the next phase as a candidate service.

Corresponding to this idea, UTSFuzzer effectively identi-
fies the bound tags by iterating all parameters of the network
requests that belong to the mobile services of candidate apps
and subsequently checking the sensitivity of their semantics.
During implementation, UTSFuzzer employs the app explorer
‘DroidBot’ [35] to trigger as many as possible mobile services
of the candidate apps. Based on MitmProxy [3], UTSFuzzer
captures the HTTP/HTTPS requests and responses of all trig-
gered mobile services. Specifically, DroidBot is configured
with the same exploration strategy (i.e., BFS_Greedy which is
a customization of Breadth First Search) to exercise each can-
didate app for 30 minutes. This timeout is set according to the
experiment settings as discussed in related works [27, 35, 53].
Besides, to effectively explore candidate mobile apps, we
manually signed up and signed in all of them. Otherwise,
most candidate apps would be stuck at registration or login
during exploration, and numerous user tag sharing services
may be missed.

3.3 Tag Generation Strategy
Given the candidate service with identified bound tags,
UTSFuzzer applies tag mutation based fuzzing to vet its se-
curity. UTSFuzzer can generate fake but valid values for the
bound tags, which will be taken as the inputs of fuzzing the
candidate service. Generally, the tag generation strategy has
two steps, including tag space exploration and tag mutation.

3.3.1 Tag Space Exploration

As the prerequisite, tag generation requires ensuring the va-
lidity of the generated bound tags. Otherwise, the candidate
mobile service (even being truly vulnerable) typically would
refuse the invalidly-crafted bound tag, causing the vulnerabil-

ities to be missed. As discussed in §3.1, achieving this goal is
not trivial, because the generated bound tag works only when
its format and value are both valid.

To mitigate this problem, UTSFuzzer utilizes the key ob-
servations: 1) Many bound tags are shared as free tags in
mobile services; 2) Tags values of existing users in the fuzzed
service’s app are supposed to be valid. Based on these key
observations, a reliable source for exploring the value space
of user tags comes from the network traffic of all mobile ser-
vices within the fuzzed app. This means, for a mobile app
pending testing, if any value of the identified bound tag is
returned (i.e., the tag sharing process) through its services,
these values should belong to its existing users and thus are
supposed to be valid. Besides, we can also refer to user tag
values that are mined in this way but from other apps. Since
some types of bound tags have universal value formats (e.g.,
the email address should be like local-part@domain) and dif-
ferent apps may share some users, the values of user tags
extracted from services of other mobile apps can be taken as
a try-best scheme to explore the value space of user tags.

Based on these, a two-fold exploration scheme of user tag
values is applied, which aims to mine as many as possible
valid values for the identified bound tags. Particularly, to ex-
plore the value space of user tags as much as possible, the tag
space exploration scheme contains two manners, i.e., in-app
mining and cross-app mining. When a mobile app is being
explored, the in-app mining seeks the values of bound tags
from the network traffic of all triggered mobile services. By
contrast, cross-app mining points to a process where bound
tag values are mined from the triggered services of other apps
(instead of the currently being tested mobile app).

When mobile apps of the candidate services are explored
and as many as possible mobile services are triggered,
UTSFuzzer monitors the data delivered back and checks if
there are user tag values. As network responses of mobile
services have a tree-like hierarchical structure (e.g., in the
format of JSON or XML), if a type of user tag is identified
at the leaf node, then all data of its sibling nodes is stored.
This is due to the observation that the user tags shared by
mobile services are typically well managed (instead of being
scattered everywhere) in network responses to ease usage.
By continuously doing so to all candidate apps that are se-
lected by the bi-directional taint analysis, UTSFuzzer finally
constructs a user tag value database stored in an instance of
MongoDB [40] database, which represents the explored tag
value space and will subsequently behave as a reliable source
for bound tag generation.

3.3.2 Tag Mutation

After constructing the user tag value database with the two-
fold tag space exploration scheme, a tag mutation strategy
is proposed to complete the generation of bound tags. The
details are as follows.

Particularly, the tag mutation mutates the original value
of the identified bound tags from two aspects. First, if the
user tag value database has multiple values for the identified
bound tags, values extracted by in-app mining will be used in
priority. Then if no needed user tag values mined from in-app
mining are available, values explored by cross-app mining
will be taken. The reason for designing such tag mutation is
that user tag values mined by in-app mining must be valid and
thus should be picked first. In contrast, user tag values mined
from cross-app mining share an equal possibility to succeed
since there is no prior knowledge. According to this aspect,
when multiple values are available for mutating the identified
bound tag, a configurable number of values will be randomly
selected from them. Setting this configuration is mainly due to
the consideration of keeping the balance between the chance
of finding vulnerabilities and not affecting the quality of the
tested mobile services.

Second, if the user tag value database has no values we
need, tag mutation adopts a general mutation method to trans-
form the original values of the identified bound tags. Namely,
for numeric bound tag values, UTSFuzzer will mutate them to
be adjacent ones (e.g., from "0" to "1"). For string or charac-
ter type of bound tag values, UTSFuzzer will perform similar
mutations according to alphabetical order. With these two
aspects of mutating bound tag value, tag mutation will ef-
fectively generate forged bound tags and feed them into the
tested candidate service.

It is worth noting that user tag values stored in the database
are marked with the package names of the apps which they
are mined from. Thus, UTSFuzzer can easily tell whether a
user tag value is mined by in-app mining or cross-app mining.
When it is the general way of mutating numeric and string
type bound tags, tag transformation based fuzzing judges
their value types by the type determination and conversion
functions (e.g., the built-in method isnumeric() in Python).

3.4 Vulnerability Determination

When it comes to the determination of whether a tested mobile
service is vulnerable to user tag spoofing attack, the confirm-
ing process is in line with the equation 3. During performing
tag transformation based fuzzing, when a bound tag value
Abound_tag is mutated to be Abound_tag′ and the delivered free
tags of other users Utags changes to be U ′

tags accordingly (i.e.,
U ′

tags ̸= NULL & U’tags ̸=Utags), UTSFuzzer can determine
that the fuzzed mobile service is vulnerable and subsequently
generate a risk report. If the shared tags Utags do not accord-
ingly change with a counterfeit bound tag, tag transformation
based fuzzing takes the next fake bound tag as input, till all
of the configured numbers of fake bound tags are all tried or
the vulnerability is confirmed.

In runtime, the test devices are all equipped with certificates
of MitmProxy in their system certificate area. Thus, their
network traffic can be monitored and intercepted. We also

contact the authors of XPOChecker [34] and modified their
tool to check the semantic sensitivity of bound tags. With
the results of tag transformation based fuzzing, we program
Python scripts to support the parsing of network responses
in formats of JSON, XML, MessagePack [41] and Protobuf
[24]. When a vulnerable service is identified, UTSFuzzer
will automatically build the risk report, which includes the
package name of the vulnerable app, the network traffic of the
vulnerable mobile service, the adopted bound tag, the value of
fake bound tags that trigger the vulnerability and the leaked
free tags of other users.

3.5 Implementation
We implement a prototype system of UTSFuzzer for evalua-
tion experiments. For the taint analysis module, it consists of
5,262 lines of Java code based on Soot [31] and FlowDroid [8]
and 297 lines of Python code (for parsing logs). We build our
fuzzing engine module from scratch. The engine can effec-
tively monitor, replay and manipulate network traffic while
automatically interacting with apps. This is implemented with
2,248 lines of Python code based on DroidBot and Mitm-
Proxy [3]. Our fuzzing engine is deployed on six test devices
(OnePlus 9, Android 11) as our test bed.

4 Evaluation

In this section, we aim to understand the security landscape
of user tag spoofing in real-world apps by answering the
following research questions:

• RQ1: Is UTSFuzzer effective in terms of security detec-
tion?

• RQ2: How many real-world services are impacted by user
tag spoofing?

• RQ3: What attack efforts may be introduced by user tag
spoofing?

4.1 Experiment Setup

DataSet. Our empirical study is performed on a large dataset
of apps collected from Google Play in April 2022. These
apps were selected with the top 500 apps in each category
listed by AppBrain [7] and AndroidRank [5] (30 categories
were considered in total2). We crawled 25,901 unique app ids
in total and successfully downloaded 25,158 apps while the
remaining 743 apps failed to download due to area restrictions,
payment requirements, and so on.

Hardware Environment. All experiments are conducted on a
Ubuntu 18.04 LTS 64-bit server with 40 CPU cores (1.2GHz)
and 128GB memory.

2Categories "Weather" and "Video Players & Editors" are filtered out
since their apps are normally irrelevant with user tag sharing.

4.2 RQ1: UTSFuzzer Effectiveness

We apply UTSFuzzer on our dataset. Below we introduce the
detailed analysis results. In the dataset, 23,505 apps are ana-
lyzed by bi-directional taint analysis, while the other 1,653
apps are dropped due to timeout, having no network permis-
sion, or failing to be analyzed by Soot and Flowdroid. As a
result, 3,257 apps may contain candidate tag sharing service.
Then, these apps are further analyzed by tag mutation based
fuzzing. During the mining of user tag values, 1,428 apps
were successfully tested and the constructed user tag value
database has 76,486 keys and 740,040 values in total. The
remaining apps failed to test due to the lack of necessary cre-
dentials for registration, servers not responding, compatibility
issues, area restrictions, and strong SSL pinning.

Upon the kept apps, tag transformation based fuzzing was
performed, and the configurable number of randomly select-
ing user tag values is set to 4 to balance the probability of
successfully conducting user tag spoofing and the impact on
the tested service. Finally, UTSFuzzer identified 100 unique
apps (containing 115 mobile services) vulnerable to user tag
spoofing with 11 different types of bound tags. Among the
vulnerable services, the bound tag values that hit the vulnera-
bilities are separately mined by in-app mining (70), cross-app
mining (5), and general mutation (40).

The bi-directional taint analysis of UTSFuzzer is per-
formed in parallel and has a timeout of 30 minutes to analyze
each app. This static process cost 1118 hours in total. The
tag transformation based fuzzing of UTSFuzzer is performed
with six Android phones (OnePlus 9, Android 11). It sets a
timeout of 30 minutes for bound tag identification and tag
space exploration. Another 30 minutes is set as the timeout
of tag mutation. In total, the tag transformation based fuzzing
of UTSFuzzer cost 1128 hours.

To ensure the reliability of our empirical study, it is criti-
cal to understand the performance of UTSFuzzer. Therefore,
we evaluate each component of UTSFuzzer. Due to the miss-
ing ground truth, we need to manually verify the reported
vulnerability results.

Bi-directional Taint Analysis. From all successfully ana-
lyzed mobile apps, the bi-directional taint analysis identified
3,257 candidate apps, whose category distribution is presented
in Table 2. To validate its effectiveness, we sampled 15 apps
in each app category separately from those identified as can-
didates and those not. Excluding the apps that were failed to
explore (e.g., due to services being shut down, area restric-
tions, compatibility issues, and so on), we manually verified
all the remaining 888 sampled apps. As shown in Table 1,
the accuracy of bi-directional taint analysis achieves 89.04%
true positive rate and 73.56% true negative rate. On the one
hand, the main reasons for false positives are that the shared
user tags located by forward taint analysis may not belong
to real users (e.g., the phone number of real estate agencies)
and there may exist redundant but actually ineffective code

which complies with the principle of bi-directional taint anal-
ysis. On the other hand, the false negatives have many causes
which include code obfuscation, adoption of customized We-
bViews, app packing, native encapsulation of service logic,
unsupported network interfaces, and so on. Fixing these issues
would be orthogonal to our study and since the overall effec-
tiveness is practical, we consider referring to relevant state-
of-the-art technologies to handle them respectively which we
leave as future work.

Table 1: Accuracy of UTSFuzzer.

#Num TP FP TN FN

Bi-directional
Taint Analysis

438 390 48 - -
450 - - 331 119

Tag Transformation
based Fuzzing

100 95 5 - -
100 - - 99 1

Tag Transformation based Fuzzing. To verify the efficacy
of proposed tag transformation based fuzzing, we picked all
100 apps that are identified to be vulnerable and randomly
sampled 100 ones that are not. By manually exercising them
and imitating user tag spoofing attack, we check whether the
reported apps along with their services are false positives and
the not reported ones are false negatives. The verification
results show that the true positive rate of tag transformation
based fuzzing comes to 95.00% and the true negative rate
comes to 99.00%. For the manually verified false positives,
we found that all of them share user tags that actually belong to
public institutions or public figures. For the one false negative,
the reason is that DroidBot failed to trigger the vulnerable
mobile service due to its limited exploration ability.

Since all the sampled apps for effectiveness validation are
randomly and evenly picked, it is firmly believed the veri-
fication results can well provide a reasonable effectiveness
estimation of UTSFuzzer among the whole dataset. Besides,
as UTSFuzzer achieves high precision and recall, we consider
it reliable to perform our empirical study.

4.3 RQ2: Vulnerability Detection
Impacted mobile apps & users. In total, UTSFuzzer iden-
tified 100 apps along with 115 mobile services that were
vulnerable to user tag spoofing attack, and the affected app
category distribution is shown in Table 4. The most affected
app categories are "Dating" (56) and "Social" (20), which
are consistent with the common sense that mobile services of
apps within these two categories normally involve user tag
sharing. Additionally, the scale of affected mobile users is
estimated by accumulating the installs of all affected mobile
apps, which reach an astonishing number - 413M+. Although
the installs of mobile apps do not represent the real number of
their users, the sum of their installs actually can reflect how
big the affected user scale is.

Impacted tag sharing services. While belonging to user
tag sharing in essence, these 115 affected mobile services
have different semantics, which cover many common service
scenarios. As shown in Table 3, there are 11 types of user
tags in total that were employed in these vulnerable mobile
services. Although normal users cannot tamper with their user
tags, providers of these vulnerable services ignore that the
attacker can manipulate his user tag by intercepting service
traffics. In contrast to them, some secure implementations
of user tag sharing are also found during the performance
validation of UTSFuzzer. These secure implementations of
user tag sharing ensure the authenticity of employed user tag
by storing user tags on the server and directly obtaining their
values from the server side (instead of from the client side),
which is an effective way that can inspire the developers of
affected mobile services to get rid of the vulnerabilities.
Impacted user tags. During our empirical study, we find
that various user tags can be leaked due to user tag spoof-
ing attack. As shown in Table 3, the leaked user tags include
demographic information (e.g., age and gender), geograph-
ical location, device information, contact information, edu-
cation information, employment information (e.g., job and
income), health information (e.g., height and weight) and so
on. Besides, the leaked user tags can be app-specific. For
instance, the leaked parent-id is specific in family locat-
ing services, which should be considered sensitive since the
attacker can take advantage of it to infer the parent-child rela-
tionship among users. Furthermore, it should be pointed out
that many leaked user tags are actually overshared by vulner-
able services ((such oversharing is discussed as XPO risks
in [34])), which strengthens our mining scheme of user tag
values and may also bring about serious privacy risks.
iOS Security. To confirm whether mobile apps on the iOS
platform are affected, we manually checked the counterparts
of 100 vulnerable apps identified during our empirical study.
Finally, 46 apps were confirmed to have iOS versions and
36 of them were able to be tested on an iPhone 11 device.
The failure reasons are mainly due to network error, being
checked as an unsafe environment, crashes, and so on. For the
successfully tested iOS apps, we manually confirmed that 35
apps of them were affected and shared the same vulnerable
services with their Android counterparts. The left one app
cannot be verified as its vulnerable mobile service provided on
the Android platform cannot be triggered on the iOS platform.
The results highly suggest that user tag spoofing attack is
independent of mobile platforms (i.e., both Android and iOS
users are similarly affected.) and the scale of affected users
can be larger when considering all mobile platforms.

4.4 RQ3: Attack Efforts and Case Study

Generally, conducting user tag spoofing leads to the illegal
access of user data and even the leakage of user tag database
of a mobile app when being conducted in scale. Moreover, it

Table 2: The detected number of mobile apps in each app category that have candidate user tag sharing services.

Category #Num Category #Num Category #Num Category #Num Category #Num

Art & Design 39 Auto & Vehicles 99 Beauty 42 Books & Reference 76 Business 135
Comics 43 Communication 82 Dating 176 Education 90 Entertainment 140
Events 80 Finance 135 Food & Drink 200 Health & Fitness 143 House & Home 116

Libraries & Demo 15 Lifestyle 147 Medical 120 Music & Audio 76 News & Magazines 206
Parenting 93 Personalization 22 Photography 40 Productivity 84 Shopping 209

Social 174 Sports 181 Tools 63 Transportation 33 Travel & Local 198

Table 3: Vulnerability details for randomly picked apps with each type of employed user tag. Note that a type of user tag may
have various names while they actually are the same, e.g., account_id, user_id, member_id, person_id and profile_id all refer to
the identifier tag of users. Thus, only one unified name for a type of user tag is presented.

Bound Tag Package #Installs Service Description Tag Generation Strategy Samples of Leaked Free Tags

user_id c**.e*** 10M+ Get users’ homepage In-app
job, income, children,
education, ethnicity, smoking,
alcohol, height

room_id c**.m***.t*** 500K+ Get owners of chat rooms General
age, gender, country,
language, income

language_id c**.f***.c*** 1M+ Get users via language In-app
distance, birthday,
date of creation, is_online

id author_id c**.m***.d*** 1M+ Get authors of artworks In-app
biography, artworks, museums,
date of death & birth

circle_id c**.g***.f*** 10M+ Get users in a circle General
deeplink, email address, parent_id,
device model, phone number

moment_id a**.t***.d*** 500K+ Get commentators General
birthday, country, city,
email address, phone number

email address c**.t**.v*** 500K+ Get users’ homepage In-app
country, region, birthday,
gender, date of creation

country c**.w***.b*** 100K+ Get live streaming users General name, country_id, rate, video_id

phone number c*.h***.m*** 10M+ Get users of contacts Cross-app
real first name, real last name,
date of last activity & registration

date j*.c*.a***.a*** 500K+ Get current popular users General
age, country, login_date,
height, weight, distance

location r*.t***.a** 1M+ Get nearby users Cross-app
car, birthday, zodiac, region,
height, latitude & longitude,
date of last activity & creation

Table 4: The category distribution of affected apps.

Category #Num Category #Num

Art & Design 1 Auto & Vehicles 1
Books & Reference 2 Business 1

Comics 1 Communication 2
Dating 56 Education 6

Entertainment 2 Food & Drink 1
Health & Fitness 1 House & Home 1

Lifestyle 6 Medical 1
Parenting 3 Shopping 2

Social 20 Sports 2

is noticed that user tag spoofing can bring about more severe

results than direct privacy leakage.

4.4.1 Business Secret Leakage

App P is a popular platform sharing local news and videos for
users in India, which has 10,000,000+ installs in Google Play
store. As identified to be vulnerable by UTSFuzzer, its service
checking profiles of members is affected by user tag spoofing.
Specifically, the employed user tag (i.e., "member_id") has
numeric values, which enable the adversary to easily forge
probe user tag values. As shown in Figure 3 (a), the attacker
can simply iterate the value of member_id to access user tags
of all other users in app P. More importantly, it is identified
that the sensitive user tags of employees of app P are leaked
when the member_id is forged to be "0" in value, including
the phone number, email address, and geographical location

GET /pvrest-2/restapi/

member/0?xxx HTTP/1.1

…

HTTP/2 200 OK

…

{

 “id”: “0”,

 “name”: ”***”,

 “organization”: ”P”,

 “mobileNumber”: ”***”,

 “longitude”: ”***”,

 “latitude”: ”***”,

 “deviceId”: ”***”,

 “dob”: ”***”,

 “gender”: ”M”,

 “imageUrl”: ”***”,

 “email”: ”***”,

 “verified”: ”true”,

 …

}

GET /api/profile/6374d4bb9afc/

xxx HTTP/2

…

HTTP/2 200 OK

…

{

 “name”: ”***”,

 “followers”: [***],

 “following”: [***],

 “devices”: [***],

 “currentDevice”: “***”

 “createdAt”: ”***”,

 “phone”: ”***”,

 “deviceId”: ”***”,

 “allInstalledApps”:

 [com.***, …],

 “isOnline”: false,

 …

}

(a) (b)

Figure 3: (a) Privacy leakage of employee users in app P; (b)
Compromised mechanism of randomized user tag in app W.

of the employee. Such private data should be considered a
business secret since it can enable the adversary to conduct
social engineering attack, which is a common penetration
route to infiltrate the internal network of modern companies
and organizations [45, 55].

More than that, we found many vulnerable mobile services
also leaked the date of registration and last active date of users.
Therefore, the attacker can conduct user tag spoofing against
these vulnerable mobile services in scale to leak the registra-
tion time and the last date of being active of all other users.
Such leakage enables the attacker to understand the number
of online users in real-time, daily registered users, daily active
users (DAU), and so on of a mobile service, which can be key
business secrets for seeking funding and even be analyzed by
competitors to build targeted marketing strategies.

4.4.2 Breaking Preservation Mechanisms

In contrast to the above situation, there exist mobile services
that employ randomized user tag (thus the value of the ran-
domized user tag can not be guessed in theory), which is
a preservation mechanism to protect from being attacked.
App W is a gaming social platform that has installations of
more than 10 million in Google Play. Compared to app P,
it employed a randomly generated user tag (i.e., profile-id)
to control the sharing of other user tags, which seems to be
more secure. However, as mined by UTSFuzzer, valid values
of such randomly generated user tag are found to be shared
in other triggered service traffics of app W. Specifically, the
attacker can take advantage of "nearby users" and "following/-
follower" services to continuously harvest profile ids of all
users in app W. As shown in Figure 3 (b), the adversary can
thereafter conduct user tag spoofing and crawl numerous user
tags of other users including phone numbers, devices, and in-

stalled apps of victims. Thus, such a preservation mechanism
of randomized user tag actually fails to achieve its goal.

4.4.3 Causing Economic Loss

POST /APIMobile/artworks/

query HTTP/1.1

…

{

 “local_date”:”2022-11-17”,

 …

}

HTTP/2 200 OK

…

{

 “entities”:[

 {

 photo_related_info,

 author_info,

 museums_info

 },

 …

]

 …

}

Figure 4: The vulnerable "Today" service in app D.

App D is a popular community with 1,000,000+ installs
in Google Play store, which connects art lovers with clas-
sic, modern, and contemporary art masterpieces. As the pre-
mium subscription of app D regulates - "there are over 750
artists in our database. Want to see all of them? Unlock all
features", users can check artworks in this app but only a
limited number of artists (and so as the artworks, museums)
are provided for unsubscribed users. However, as shown in
Figure 4, UTSFuzzer found that the attacker can simply forge
his user tag - local_date to deceive the "Today" mobile ser-
vice which is designed to share users with limited artworks
according to their current date. By exploiting this vulnerabil-
ity, the adversary can easily bypass the premium subscription
mechanism of app D and access data that he is not supposed to
obtain. Moreover, the attacker is even able to sell these data to
users of app D to make a profit, which can bring unacceptable
economic loss to app D.

4.4.4 Monitoring User Activities

App T is a popular platform with 500,000+ installs in Google
Play store, which benefits users to manage and instantly com-
municate with their team, club, or group. A user in app T can
create his own group or join other users’ groups with relevant
group codes. As designed by app T, a user can check the mes-
sages, event schedules, shared photos or files, and members
of groups that he is a member of. Typically, a user can only
access information of users that joined the same groups as
him. When a user signs in app T, there is a user tag sharing
mobile service that relies on his user tag to automatically
share back information about his groups on the main page of

GET /361/grouplist_user.php?
xxx&uid=******&xxx
…

HTTP/1.1 200 OK
…
{
 “Member”:[
 {
 “GroupCode”: “******”,
 “Name”: “The friends”,
 "LastActivityOn”: “1669252927”,
 "LeaderInfo”:{…},
 …},
 …],
 …
}

Figure 5: A vulnerable user tag sharing service in app T.

app T. Specifically, as shown in Figure 5, this mobile service
relies on uid (i.e., the employed user tag) to fulfill its func-
tionality. However, by forging counterfeit uid, the attacker
can transform himself to be any user with a specific uid tag
and illegally obtain information about the victim’s groups,
including the group code, date of last activity, leader infor-
mation, and so on. Furthermore, with the leaked group codes,
the attacker can join the groups of the victim without permis-
sion. Therefore, by conducting user tag spoofing in scale, the
attacker is even able to monitor the members, events, chat
messages, shared photos, or files (if there exist) in any group.
Based on these, the adversary can easily monitor user activi-
ties and even bring physical threats to victims (e.g., assaulting
users who participate in an event the attacker objects to).

4.5 Ethics & Responsible Disclosure
Conducting the empirical study might raise ethical issues.
Therefore, we carefully manage our research activities to en-
sure that they stay within legal and ethical boundaries. In
this work, we followed the established practices as discussed
in [2, 64]. In particular, UTSFuzzer was configured to test at
the speed of how a normal user acts, and each mobile ser-
vice was fuzzed at most four times. This helpfully avoids
impacting existing service quality (e.g., service availability).
Meanwhile, UTSFuzzer was set to automatically check the
HTTP status code of service response and stop immediately
once the exceptional status is detected, e.g., Internal Server
Error (HTTP code 500). In our experiments, such exceptional
status was never detected. Moreover, user tags involved in our
empirical study were managed at the granularity of a single
user tag for preventing them from being linked (to identify
real users) and stored inside an internal storage server with
password control. While performing case studies, we created
an attacker account and a victim account that both belong to
us for verifying whether the tested mobile service is vulnera-
ble or not. When accessing real user data was inevitable, the
relevant case study was performed after being authorized.

We have conducted responsible disclosure of our findings
to the app developers and actively worked together with them

to fix these problems. To ease the overhead of handling our
reports, we briefly explained user tag spoofing and directly
pointed out the vulnerable service along with the employed
user tag. Note that the responsible disclosure is private (only
available to relevantly affected app developers). The vulner-
able mobile apps along with sensitive user tags involved in
this paper are all anonymized or masked.

5 Limitation & Discussion

The main research focus of academia has been illegal pri-
vacy collection for a long time. In contrast, this paper takes
mobile apps as the entry point of studying user tag sharing
services and systematically analyzes the user tag spoofing
attack against them. By adopting the user tag mining scheme
with hints provided by mobile apps, it is shown that numerous
mobile users are at risk of user tag spoofing. It should be
noted that UTSFuzzer can be extended to test upon a broader
software against unauthenticated web APIs.

Admittedly, our approach naturally suffers from certain
limitations, which will bring both false positives and false
negatives. Regarding the false positives, as inherited from
the limitations of static program analysis, bi-directional taint
analysis of UTSFuzzer can bring false positives when locat-
ing candidate user tag sharing services. Besides, the modi-
fied XPOChecker [34] may also occasionally result in false
positives when it treats non-user data (e.g., the geographical
location of a supermarket) as user tags.

Additionally, UTSFuzzer can have false negatives. First,
the limited exploration ability of existing dynamic exer-
cisers can result in the insufficiency of exploring user
tag value space and the missing of vulnerable mobile ser-
vices. Second, the strong SSL pinning [32] was seen in
a few tested apps, which can prevent MitmProxy from
monitoring and intercepting their network traffic and thus
bring false negatives. Third, mobile apps that did not re-
quest "android.permission.INTERNET" permission were
directly dropped since it is assumed that user tag sharing
services should be able to access the internet to communi-
cate with their servers. But this may not hold in several rare
situations, e.g., apps that simply use another ‘server’ app re-
siding on the same device through inter-app communication.
Besides, UTSFuzzer may also miss bound tags that have no
known or apparent sensitive semantics and bring false nega-
tives. Nevertheless, it should be noted that since bound tags
are used to cluster users, they are typically unique enough to
represent a group of users (i.e., distinguish from other users)
and thus are sensitive in most cases. Moreover, it should be
noted that there are some inevitable factors bringing false
negatives. For example, some mobile apps need special cre-
dentials (to register or log in), devices (e.g., real IoT devices
needed to connect with the companion app), networks of a
specific area, or other requirements to be effectively explored.

Despite being affected by these limitations, UTSFuzzer

achieves practical performance. It should be noted that
UTSFuzzer can directly benefit from any improvement in
these aspects and since handling these limitations is orthogo-
nal to this study, we leave them as our future work.

Furthermore, we would like to discuss the difficulty of user
tag exploration in practice and the mitigation against user tag
spoofing. The difficulty of tag exploration for spoofing lies in
the size of tag value spaces. For example, for the gender tag,
the attacker can mutate its value in a relatively narrow space.
But for the UUID tag, it is normally hard to generate effective
values. To mitigate this problem, UTSFuzzer adopts several
strategies (e.g.,in-app mining) to maximize the success rate.
Regarding the mitigation strategies, we summarize three ones
based on our study results and the developers’ feedback: 1)
Authenticity verification against HTTP requests should be
enforced to check whether a bound tag’s value belongs to
the service requester; 2) Aapp developers should reduce tag
involvement in their services, lessening attack surface; 3) Risk
control should be introduced against abnormal behaviors.

6 Related Work

Fuzzing. Fuzzing is an effective security vetting technique.
Generation-based fuzzers [56, 62] normally generated inputs,
for example, based on input templates. Nevertheless, with-
out domain knowledge specific to each mobile app, it is hard
to obtain such input templates available for generating valid
user tag values. Guided fuzzers [1, 16, 36, 47, 52] applied
heuristics to improve their capability of triggering unexpected
program behaviors, e.g., mutating the seeds that help explore
new program branches. But, these heuristics cannot be ap-
plied to our research problems. The reason is for a user tag
value that successfully triggers spoofing, its mutated ones are
not necessarily able to achieve the same goal. Mutation-based
fuzzers [13,15] explored programs with continuous input mu-
tation, e.g., random mutation (e.g., flipping and truncating) of
inputs. They expected to hunt unexpected program behaviors.
Nonetheless, they hardly hold in the context of this paper.
The reason is that the simple mutation of a user tag value
does not necessarily generate another valid user tag value.
For example, a valid email address - "alice@gmail.com" in
an app is truncated to "a@gmail.com", which may not be
valid in this app. Therefore, existing fuzzing approaches were
not designed for verifying user tag sharing security and are
hardly extended to solve the research problems in our paper.
In contrast, UTSFuzzer relies on the proposed mining scheme
to effectively explore the valid value space of user tags and
further verify the existence of user tag spoofing risk. Further-
more, due to ethical considerations, UTSFuzzer is designed
to be non-exhaustive and thus cannot be fairly compared in
performance with traditional fuzzers.
Mobile Privacy Security. There have been numerous re-
searches focusing on the security of mobile privacy for more
than a decade. A significant amount of efforts have been put

into the identification of mobile privacy [9, 28, 29, 42, 46],
detection of privacy collection with static taint analysis
[8, 14, 25], dynamic taint analysis [20, 38, 54] and network
traffic analysis [19, 49], or even the legality of privacy collec-
tion against user intention [17, 21, 22, 43, 60, 61] and privacy
policy [4, 51, 57, 65]. Unlike these works, this paper pays
attention to the security issues of user tag sharing instead of
privacy collection related risks.

Mobile Service Authentication. Prior work in this area fo-
cused on the authentication problem of mobile services, such
as single-sign-on (e.g., [50]), password protection ([37]),
authentication key management (e.g., [66]), authentication
design (e.g., [12]) and so on. Different from them, UTSFuzzer
focuses on the vulnerability of user tag sharing mobile ser-
vices and we demonstrate that existing security protection
solutions were limited against user tag spoofing attacks.

Management of Mobile User Data Sharing. Actually, there
are two main research directions in this aspect. The first class
of work focused on judging whether the user data shared
by mobile services is appropriate. Koch et al. [30] and li et
al. [34] revealed that if the shared user data is more than the
presented ones (i.e., user tag oversharing) in mobile apps,
serious privacy leakage can be brought. Compare to them,
we systematically studied the user tag spoofing issue rather
than discussing whether user tags are overshared. The sec-
ond direction focused on the research target of our paper,
i.e. the security of user tag sharing. A few prior works have
revealed a series of tag security issues, e.g., ride-hailing ser-
vice [64], nearby users service [44, 63] and contact discovery
service [26]. Another related work was conducted by Auth-
Scope [67], which performed a study on post-authentication
security in mobile services. Different from prior work, our
paper provides a thorough and comprehensive understanding
of user tag spoofing attack and reveals its landscape along
with its severe security consequences.

7 Conclusion

In this paper, we conduct a systematic and comprehensive
study on the security of user tag sharing. We generalize and
formalize the user tag spoofing security issues, along with the
root cause analysis and the conclusion of their attack vectors.
We propose a novel tag mutation based fuzzing approach,
called UTSFuzzer, that can identify tag sharing services and
vet their security. With a large-scale empirical study of 23,505
real-world apps, we reveal the severity of user tag spoofing
attack, which can bring various serious consequences and put
numerous mobile users at serious risk. We believe our work
can facilitate the understanding of user tag sharing, improve
its security and inspire future research.

Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments that helped improve the qual-
ity of the paper. This work was supported in part
by the National Key Research and Development Pro-
gram (2021YFB3101200), National Natural Science Founda-
tion of China (62172104, 62172105, 61972099, 61902374,
62102093, 62102091), Natural Science Foundation of Shang-
hai (19ZR1404800), China Postdoctoral Science Foundation
(BX2021079, 2021M690706). Zhemin Yang was supported in
part by the Funding of Ministry of Industry and Information
Technology of the People’s Republic of China under Grant
TC220H079. Min Yang is the corresponding author, and a fac-
ulty of Shanghai Institute of Intelligent Electronics Systems,
and Engineering Research Center of Cyber Security Auditing
and Monitoring, Ministry of Education, China.

References

[1] American Fuzzy Lop. https://lcamtuf.coredump.
cx/afl/.

[2] Vulnerability Disclosure Cheat Sheet. https:
//cheatsheetseries.owasp.org/cheatsheets/
Vulnerability_Disclosure_Cheat_Sheet.html.

[3] Cortesi Aldo, Hils Maximilian, and Raumfresser. Mitm-
proxy - an interactive HTTPS proxy. https://
mitmproxy.org/.

[4] Benjamin Andow, Samin Yaseer Mahmud, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh,
and Serge Egelman. Actions speak louder than words:
Entity-sensitive privacy policy and data flow analysis
with policheck. In Usenix Security Symposium (USENIX
Security), 2020.

[5] AndroidRank. Free Android Market Data, History,
Rankings. https://www.androidrank.org/.

[6] AppBrain. Android network libraries. https:
//www.appbrain.com/stats/libraries/tag/
network/android-network-libraries.

[7] AppBrain. Google Play Ranking: The Top Free Overall
in the United States. https://www.appbrain.com/
stats/google-play-rankings/.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 2014.

[9] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228, 2012.

[10] Michael Backes, Sven Bugiel, Erik Derr, Patrick Mc-
Daniel, Damien Octeau, and Sebastian Weisgerber. On
demystifying the android application framework:{Re-
Visiting} android permission specification analysis. In
25th USENIX security symposium (USENIX security
16), pages 1101–1118, 2016.

[11] David Barrera, H Güneş Kayacik, Paul C Van Oorschot,
and Anil Somayaji. A methodology for empirical anal-
ysis of permission-based security models and its appli-
cation to android. In Proceedings of the 17th ACM
conference on Computer and communications security,
pages 73–84, 2010.

[12] Antonio Bianchi, Eric Gustafson, Yanick Fratantonio,
Christopher Kruegel, and Giovanni Vigna. Exploita-
tion and mitigation of authentication schemes based
on device-public information. In Proceedings of the
33rd Annual Computer Security Applications Confer-
ence, pages 16–27, 2017.

[13] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–
1043, 2016.

[14] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi,
Manuel Egele, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. Edgeminer: Automatically detecting im-
plicit control flow transitions through the android frame-
work. In ISOC Network and Distributed System Security
Symposium (NDSS), 2015.

[15] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In 2015 IEEE
Symposium on Security and Privacy, pages 725–741.
IEEE, 2015.

[16] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[17] Xin Chen and Sencun Zhu. Droidjust: Automated
functionality-aware privacy leakage analysis for android
applications. In ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (WiSec), 2015.

[18] Yanbo Chen, Jingsha He, Wei Wei, Nafei Zhu, and Cong
Yu. A multi-model approach for user portrait. Future
Internet, 13(6):147, 2021.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://mitmproxy.org/
https://mitmproxy.org/
https://www.androidrank.org/
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/google-play-rankings/
https://www.appbrain.com/stats/google-play-rankings/

[19] Andrea Continella, Yanick Fratantonio, Martina Lindor-
fer, Alessandro Puccetti, Ali Zand, Christopher Kruegel,
and Giovanni Vigna. Obfuscation-resilient privacy leak
detection for mobile apps through differential analysis.
In ISOC Network and Distributed System Security Sym-
posium (NDSS), 2017.

[20] William ENCK. Taintdroid: An information-flow track-
ing system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2010.

[21] Hao Fu, Zizhan Zheng, Somdutta Bose, Matt Bishop,
and Prasant Mohapatra. Leaksemantic: Identifying ab-
normal sensitive network transmissions in mobile appli-
cations. In IEEE International Conference on Computer
Communications (INFOCOM), 2017.

[22] Hao Fu, Zizhan Zheng, Aveek K Das, Parth H Pathak,
Pengfei Hu, and Prasant Mohapatra. Flowintent: De-
tecting privacy leakage from user intention to network
traffic mapping. In International Conference on Sensing,
Communication and Networking (SECON), 2016.

[23] Mengke Gao, Yan Zhang, and Yue Gao. Research
progress of user portrait technology in medical field.
In Proceedings of the 2nd International Symposium on
Artificial Intelligence for Medicine Sciences, pages 500–
504, 2021.

[24] Google. Protocol Buffers. https://developers.
google.com/protocol-buffers?hl=zh-cn.

[25] Michael I Gordon, Deokhwan Kim, Jeff H Perkins,
Limei Gilham, Nguyen Nguyen, and Martin C Rinard.
Information flow analysis of android applications in
droidsafe. In ISOC Network and Distributed System
Security Symposium (NDSS), 2015.

[26] Christoph Hagen, Christian Weinert, Christoph Sendner,
Alexandra Dmitrienko, and Thomas Schneider. All the
numbers are us: Large-scale abuse of contact discovery
in mobile messengers. In NDSS, 2021.

[27] Yuyu He, Lei Zhang, Zhemin Yang, Yinzhi Cao, Keke
Lian, Shuai Li, Wei Yang, Zhibo Zhang, Min Yang, Yuan
Zhang, et al. Textexerciser: feedback-driven text input
exercising for android applications. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 1071–1087.
IEEE, 2020.

[28] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu
Wu, Kangjie Lu, Xiangyu Zhang, and Guofei Jiang.
{SUPOR}: Precise and scalable sensitive user input de-
tection for android apps. In Usenix Security Symposium
(USENIX Security), 2015.

[29] Jianjun Huang, Xiangyu Zhang, and Lin Tan. Detecting
sensitive data disclosure via bi-directional text correla-
tion analysis. In International Symposium on Founda-
tions of Software Engineering (FSE), 2016.

[30] William Koch, Abdelberi Chaabane, Manuel Egele,
William Robertson, and Engin Kirda. Semi-automated
discovery of server-based information oversharing vul-
nerabilities in android applications. In Proceedings of
the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 147–157, 2017.

[31] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie
Hendren. The soot framework for java program analysis:
a retrospective. In Cetus Users and Compiler Infastruc-
ture Workshop (Cetus), 2011.

[32] Indusface Learning. What is SSL
Pinning? – A Quick Walk Through.
https://www.indusface.com/learning/
what-is-ssl-pinning-a-quick-walk-through/.

[33] Muyuan Li, Haojin Zhu, Zhaoyu Gao, Si Chen, Le Yu,
Shangqian Hu, and Kui Ren. All your location are be-
long to us: Breaking mobile social networks for auto-
mated user location tracking. In Proceedings of the
15th ACM international symposium on Mobile ad hoc
networking and computing, pages 43–52, 2014.

[34] Shuai Li, Zhemin Yang, Nan Hua, Peng Liu, Xiaohan
Zhang, Guangliang Yang, and Min Yang. Collect re-
sponsibly but deliver arbitrarily? a study on cross-user
privacy leakage in mobile apps. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1887–1900, 2022.

[35] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.
Droidbot: a lightweight ui-guided test input generator
for android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-
C), pages 23–26. IEEE, 2017.

[36] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 627–637, 2017.

[37] Siqi Ma, Juanru Li, Surya Nepal, Diethelm Ostry, David
Lo, Sanjay Kumar Jha, Robert H Deng, and Elisa
Bertino. Orchestration or automation: authentication
flaw detection in android apps. IEEE Transactions on
Dependable and Secure Computing, 19(4):2165–2178,
2021.

[38] Björn Mathis, Vitalii Avdiienko, Ezekiel O Soremekun,
Marcel Böhme, and Andreas Zeller. Detecting informa-
tion flow by mutating input data. In 32nd International

https://developers.google.com/protocol-buffers?hl=zh-cn
https://developers.google.com/protocol-buffers?hl=zh-cn
https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/
https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/

Conference on Automated Software Engineering (ASE),
2017.

[39] Ruomu Miao and Benqian Li. A user-portraits-based
recommendation algorithm for traditional short video
industry and security management of user privacy in
social networks. Technological Forecasting and Social
Change, 185:122103, 2022.

[40] MongoDB. MongoDB: The Developer Data Platform.
https://www.mongodb.com/.

[41] Msgpack. MessagePack: It is like JSON. but fast and
small.. https://msgpack.org/index.html.

[42] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou,
Guofei Gu, and XiaoFeng Wang. Uipicker: User-input
privacy identification in mobile applications. In Usenix
Security Symposium (USENIX Security), 2015.

[43] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan
Fang, Rui Shao, and Yan Chen. Flowcog: context-aware
semantics extraction and analysis of information flow
leaks in android apps. In Usenix Security Symposium
(USENIX Security), 2018.

[44] Iasonas Polakis, George Argyros, Theofilos Petsios,
Suphannee Sivakorn, and Angelos D Keromytis.
Where’s wally? precise user discovery attacks in lo-
cation proximity services. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 817–828, 2015.

[45] Nia Quinn. Riot Games gives social engineering attack
update. https://esports.gg/news/league-of-legends/riot-
games-announce-social-engineering-attack-update/,
2023.

[46] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A
machine-learning approach for classifying and catego-
rizing android sources and sinks. In ISOC Network and
Distributed System Security Symposium (NDSS), 2014.

[47] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, vol-
ume 17, pages 1–14, 2017.

[48] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system.
In 28th USENIX Security Symposium (USENIX Security
19), pages 603–620, 2019.

[49] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. Recon: Revealing and

controlling pii leaks in mobile network traffic. In Inter-
national Conference on Mobile Systems, Applications,
and Services (MobiSys), 2016.

[50] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau.
Mossot: An automated blackbox tester for single sign-on
vulnerabilities in mobile applications. In Proceedings
of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 269–282, 2019.

[51] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini,
James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D
Breaux, and Jianwei Niu. Toward a framework for de-
tecting privacy policy violations in android application
code. In International Conference on Software Engi-
neering (ICSE), 2016.

[52] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[53] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weim-
ing Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhen-
dong Su. Guided, stochastic model-based gui testing
of android apps. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages
245–256, 2017.

[54] Mingshen Sun, Tao Wei, and John CS Lui. Taintart: A
practical multi-level information-flow tracking system
for android runtime. In ACM Conference on Computer
and Communications Security (CCS), 2016.

[55] Tessian. 15 Examples of Real Social Engineer-
ing Attacks. https://www.tessian.com/blog/
examples-of-social-engineering-attacks/.

[56] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-driven seed generation for fuzzing. In 2017
IEEE Symposium on Security and Privacy (SP), pages
579–594. IEEE, 2017.

[57] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky
Slavin, Travis D Breaux, and Jianwei Niu. Guileak:
Tracing privacy policy claims on user input data for
android applications. In International Conference on
Software Engineering (ICSE), 2018.

[58] Xu Wang, Xiong Wei, Jiajun Ma, Guangjie Li, and Jian-
cun Zuo. User portrait technology and its application
scenario analysis. In The 2021 3rd International Con-
ference on Big Data Engineering, pages 64–69, 2021.

[59] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin
Beznosov. Android permissions remystified: A field

https://www.mongodb.com/
https://msgpack.org/index.html
https://www.tessian.com/blog/examples-of-social-engineering-attacks/
https://www.tessian.com/blog/examples-of-social-engineering-attacks/

study on contextual integrity. In 24th USENIX Security
Symposium (USENIX Security 15), pages 499–514,
2015.

[60] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao,
Yayuan Xiong, Fengyuan Xu, Haoyu Wang, Peng Gao,
Zhuotao Liu, Feng Xu, et al. Deepintent: Deep icon-
behavior learning for detecting intention-behavior dis-
crepancy in mobile apps. In ACM Conference on Com-
puter and Communications Security (CCS), 2019.

[61] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X Sean Wang. Appintent: Analyzing sen-
sitive data transmission in android for privacy leakage
detection. In ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[62] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2139–2154, 2017.

[63] Fanghua Zhao, Linan Gao, Yang Zhang, Zeyu Wang,
Bo Wang, and Shanqing Guo. You are where you app:
An assessment on location privacy of social applications.
In 2018 IEEE 29th International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 236–247.
IEEE, 2018.

[64] Qingchuan Zhao, Chaoshun Zuo, Giancarlo Pellegrino,
and Li Zhiqiang. Geo-locating drivers: A study of sen-
sitive data leakage in ride-hailing services. In Annual
Network and Distributed System Security symposium,
February 2019 (NDSS 2019), 2019.

[65] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger
Iyengar, Bin Liu, Florian Schaub, Shomir Wilson, Nor-
man Sadeh, Steven M Bellovin, and Joel Reidenberg.
Automated analysis of privacy requirements for mobile
apps. In ISOC Network and Distributed System Security
Symposium (NDSS), 2017.

[66] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why
does your data leak? uncovering the data leakage in
cloud from mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1296–1310. IEEE,
2019.

[67] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin.
Authscope: Towards automatic discovery of vulnera-
ble authorizations in online services. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 799–813, 2017.

	Introduction
	Problem Statement
	User Tag Sharing
	User Tag Spoofing Attack
	Real-World Example
	Attack Formalization
	Threat Model

	UTSFuzzer
	Overview
	Preprocessing
	Candidate Mobile App Detection
	Bound Tag Identification

	Tag Generation Strategy
	Tag Space Exploration
	Tag Mutation

	Vulnerability Determination
	Implementation

	Evaluation
	Experiment Setup
	RQ1: UTSFuzzer Effectiveness
	RQ2: Vulnerability Detection
	RQ3: Attack Efforts and Case Study
	Business Secret Leakage
	Breaking Preservation Mechanisms
	Causing Economic Loss
	Monitoring User Activities

	Ethics & Responsible Disclosure

	Limitation & Discussion
	Related Work
	Conclusion

